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FOREWORD TO SOMMERFELD'S COURSE
P. P. EWALD
PoLYTECHNIC INSTITUTE 0F BROOKLYN, NEW YORK

The author of this Course on Theoretical Physics, Arnold Sommerfeld,
was one of the central figures in achieving the transformation through which
physics passed in the two decades from 1910 to 1930. Without his inspired
and untiring efforts both the tumultuous advance and the wide-spread
dissemination of the quantum theory of the atom would not have been what
they were. Sommerfeld’s Institute for Theoretical Physics in Munich became
a school from which issued a steady stream of research papers by German
and foreign, young and mature students of atomic theory. His famous
book ¢ Atombau und Spektrallinien,” followed later by the companion
volume * Wellenmechanik,” was for a long time the only full and authori-
tative account of this fundamental subject; its successive editions unroll an
impressive survey of the rapid developiment of atomic theory following
Niels Bohr’s first papers.

Both by his training and previous research Sommerfeld was firmly rooted
in the mathematical methods of classical physics, and to this fact he owes
much of his mastery of the newly created methods of quantum physics,
especially after the advent of Schrédinger’s wave mechanics in 1926. It
was therefore natural for Sommerfeld to give his students a thorough training
in classical methods, all the more so since he himself took great delight
in the aesthetic beauty of classical theory. The harmony between mathe-
matical formalism, its physical interpretation, and experimental materializa-

tion was cast in relief in Sommerfeld’s lectures and deeply impressed his
students.

Sommerfeld was over seventy, and retired after forty years of academic
teaching, when he committed his lectures to paper. He did it with a sense
of double obligation: to preserve through a crisis the achievements that had
carried physics to great triumphs and to bequeath to the young generation of
Physicists the valuable analytical tools that had been shaped on the classical
problems. Sommerfeld had taken an active part in perfecting these tools
from 1895 onwards, when he wrote his doctoral thesis on Arbitrary Functions
In Physics, Among his earliest brilliant work was the construction of a
strict solution for the diffraction of a wave by an edge ; he extended the
methods that Riemann used in the theory of functions, with the result
that a solution of the diffraction problem by an image method in multi-valued
Space was obtained. The reader will find this discussed in Volume V on
Optics. Extending from Sommerfeld’s early period in Gottingen to the
beginning of the quantum period in Munich, and in co-authorship with the
great mathematician Felix Klein in Géottingen, the preparation of the four
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volume standard work on the theory of rotating rigid bodies, Theorie des |
Kreisels, proceeded. This work was intended to demonstrate the intimate |
connection between ““pure” and * applied” mathematics by bringing |
a great variety of mathematical topics, such as the theory of functions, i
elliptic functions, quaternions, Klein-Caley parameters, etc., to bear on this |
problem of dynamics of a rigid body. While holding the chair of Technical |
Mechanics at the Technische Hochschule in Aachen, 1899-1905, Sommerfeld |
became deeply interested in engineering problems. His papers on the hydro- 1
dynamics of lubrication, on the interaction between electrical generators |
working on the same power line, on the braking of trains, and on other
topics all adopt a general approach that gives them lasting value. With the |
advent of wireless telegraphy a series of papers by Sommerfeld and his
pupils began on the mode of emission and of propagation of radio waves. |
They offer excellent examples of the mathematical methods in which
Sommerfeld was a master. In particular, the diffraction problem of these §
waves round the earth was brought down to the discussion of complex 1
integrals, which form a strict solution (see Volume 6, Chapter 6). ]

It would be out of place to elaborate a full list of the achievements with '
which Sommerfeld enriched physical theory. The reader may be referred |
to some of the articles listed below. But a few words may be added on |
Sommerfeld as a teacher, and on the significance of the course of lectures
now being published in translation.

The courses of theoretical physics held in Munich were of two kinds,
general ones and specialized ones. The former were given four hours, or !
more precisely periods of 45-50 minutes, a week through a 13-week winter |
semester and an 11-week summer semester. These six courses form the
subject of the present six volumes. Each served as an introduction for
students who had taken the demonstration courses on experimental physics
(given, in Munich, by Réntgen, later by W. Wien). In experimental
physies the student acquired a factual survey of the phenomena and of their
quantitative evaluation, based on a fundamentally non-mathematical |
treatment. In the courses on theoretical physics the elementary ground |
was gone over again, but with a view to developing the mathematical
handling and to constructing an integrating theory which could then be
extended to advanced problems. The latter might change from one series |
of courses to the next, and the inclusion of topical subjects in the second |
halves of these courses made them most interesting even to advanced students
who had already gone over the subject in their previous work. In addition |
to the lectures, two hours a week were devoted to discussing problems.

The specialized courses were two-hour-a-week lecture courses on subjects "
which could be dealt with only briefly in the general course, or had topical
interest. Those given by Sommerfeld were usually connected with his own |}
current research and often contained parts which appeared a little later as
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original papers. The interpretation of the Lorentz transformation as a
rotation in four dimensional space (Volume 3, §26), the transition from
wave optics to geometrical optics (Volume 5, §35), the discussion of
the signal velocity in a dispersive medium (Volume 5, §22) are some
examples. In later general courses such subjects were often included, to
the exclusion of other less interesting parts of previous courses.

Besides the lecture courses, a seminar and colloquium offered instruction
in advanced topics ; here the students had to review the assigned subject
and to deliver the talk, which meant several weeks’ intensive study.

From the student’s point of view the great attraction of Sommerfeld’s
lectures lay in their clarity : the approach from the physical side, the for-
mulation of the mathematical problem, the simple and yet general explana-
tion of the mathematical methods used, and the thorough discussion of the
result again in terms of physical experiment. His firm, well-distributed
writing on the blackboard, and the evidence of his diagrams, helped the
student to survey at the end of each period all the subjects that had been
covered. Besides, the standard of the course was high enough to tax the
powers of the better students and to demand vigilant cooperation. This
was all the more important in a university system where there was no check
on attendance and only a voluntary one on performance. In giving an
original discussion of a problem in the exercises even the beginner would
attract the attention of Sommerfeld or of the assistant in charge, and he
would be stimulated by the appreciative understanding his effort received.

Sommerfeld had an extraordinary flair for genuine endeavor and per-
formance, irrespective of the age of his students. That is why scientists of
the rank of Debye, Pauli, Heisenberg (to name only those who now are
Nobel prize men) became attached to him in their early years of study.
But also the good average student was well looked after and given smaller
problems or small responsibilities to exercise his forces. The indolent student
soon turned away on his own account. Thus Sommerfeld’s students formed
in a way a select group, but their number remained large enough to create
a breeze that helped the inexperienced newcomers rapidly to unfurl their
own sails. May the translation of Sommerfeld’s lectures carry some of this

breeze afield and assist other groups in preparing to sail the ocean of
discovery.

SoME ARTICLES ON THE AUTHOR’S WORK

Anon., Current Biographies, 1950, pp. 537-538 (with portrait),

P. Kirkpatrick, Am. J. Physics (1949). 17, 5, 312-316. (Presentation of the Qerstedt
Medal to Sommerfeld by the American Association of Physics Teachera.)

M. Born, Proc. Roy. Soc., London. A. (1952). (Obituary.)

P.P. Ewald, Nature (1951). 168, 364—366. (Obituary Notice.)

W, Heisenberg, Naturwissenschaften (1951). 38, 337.

M. v. Laue, N aturwissenschaften (1951). 38, 513-518. (A full appraisal of Sommerfeld’s
work.)
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PREFACE TO THE FIRST EDITION, SEPTEMBER 1942

The encouragement of some of my former students and the repeated
suggestion of the publishers decided me to publish my general course on
theoretical physics which I gave regularly for thirty-two years at the
University of Munich.

This was an introductory course, and was attended not only by the
shysics majors of the University and the Polytechnic Institute (Technische
Hochschule), but also by candidates for teachers’ degrees in mathematics
and physics, by students of astronomy and some few of physical chemistry—
all usually in their third and fourth years. The lectures were held four
times a week and supplemented by a two-hour problem period. Special
courses on modern physics, which were given concurrently with these, have
not been included in this series of books; their subject matter found its way
into my scientific papers, summarizing articles, and other books. While it is
true that quantum mechanics always hovers in the background and refer-
ence is made to it now and then, the actual substance of these lectures is

classical physics.

The order of the courses, which has been kept in their publication, was
Mechanics

Mechanics of Deformable Bodies

Electrodynamics

Optics

Thermodynamics and Statistical Mechanics

Partial Differential Equations in Physics

S ok o

The courses on mechanics were given in alternate years by myself and
by my colleagues in mathematics. Concurrent courses in hydrodynamics,
electrodynamics, and thermodynamics were taught by younger members of
the staff. Vector analysis was given in a separate course so that its systematic
development could be omitted from my lectures.

In print, as in my classes, I will not detain myself with the mathematical
foundations, but proceed as rapidly as possible to the physical problems
themselves. My aim is to give the reader a vivid picture of the vast and
varied material that comes within the scope of theory from a suitably
chosen mathematical and physical vantage point. With this in mind I shall
not be too concerned if T have left some gaps in the systematic justification
and axiomatic structure of the work. In any case I do not wish to frighten
the hearer of my lectures with drawn-out investigations of a mathematical
or logical nature and distract his attention from what is physically interesting.
It is my belief that this attitude proved its worth in my courses ; it has
therefore been retained in the printed lectures. Whereas the lectures of
Planck are irreproachable in systematic formulation, I believe that I can
claim for mine a greater variety of subject matter and a more flexible handling
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of the mathematical apparatus. Moreover, I gladly refer the reader to the
more complete and often more thorough treatment of Planck, especially in
thermodynamics and statistical mechanics.

The problems collected at the end of each volume should be regarded as
supplementary to the text. They were handed in by the students and then
presented orally during the problem periods. Elementary numerical
problems, to be found so prolifically in texts and collections of problems, have,
in general, not been included. The problems are numbered by chapter.
Sections are numbered through in each volume and equations in each
section. References within each volume to earlier equations can thus be
made merely by giving the section, and equation numbers. To make it
simpler to find a given section the upper inside corners of every pair of
pages bear the section and chapter number.

Looking back on my years of teaching I wish to acknowledge with grati-
tude my special indebtedness to two men, Rontgen and Felix Klein. Rantgen
not only created the external conditions for my professional activity by
calling me to a privileged sphere of action; he also stood by my side and act-
ively furthered the increasing scope of my work over a period of many years.
Even carlier Felix Klein had imparted to my mathematical thinking that
turn of mind which is best adapted to applications; through his mastery in
the art of lecturing he exerted a strong indirect influence on my own teaching.
In particular let me mention that the last part of this course was announced
for the first time while I was still instructor in Géttingen and imbued with
the mathematical tradition of that university symbolized in the three names
Riemann—Dirichlet—Klein. At that time my course was less comprehensive
than the present Volume VI, but it found much resonance in the audience.
When the course was repeated in later years my students often told me
that only here had they really grasped the handling and application of
mathematical results, e.g., Fourier methods, applications of the theory
of functions, boundary value problems.

In conclusion, let me send out these volumes with the wish that they
arouse the reader’s interest in our beautiful science and give him as much
pleasure as the courses gave to those attending them and to me during my
many years of teaching activity.

Munich, September 1942 Arnold Sommerfeld
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INTRODUCTION

Mechanics is the backbone of mathematical physics. Though it is
(rue that we no longer require physics to explain all phenomena in
terms of mechanical models, as was common during the last century,
we are nevertheless convinced that the principles of mechanics, such as
those of momentum, energy, and least action, are of the greatest importance
in all branches of physics.

We call this book  Mechanies,” not ““ Analytical Mechanics ”’ as the
mathematicians are wont to do. The latter name has its origin in the
great work of Lagrange (1788), who attempted to mold the whole system
of mechanics into a consistent language of mathematical equations and was
proud of the fact that ““ one would not find a single diagram in his work.”
We, on the contrary, shall draw as much as possible on illustration and
comparison. The reader will find in this volume many concrete applica-
tions in astronomy, physics, and even to some degree in engineering, which
should help to make the principles clearer.

The exact title of the book should be ¢ Mechanics of Systems of a Finite
Number of Degrees of Freedom ”; that of the second volume would accor-
dingly be *“Mechanics of Systems with an Infinite Number of Degrees of
Freedom.” Since, however, the concept of degrees of freedom is not too
well known and can here be explained only at the beginning of the second
chapter, we shall be satisfied with the customary title ‘‘ Mechanics,” a
title hardly subject to misunderstanding.

We commence with Newton’s fundamental analysis in his *“ Philosophiae
Naturalis Principia Mathematica »’ (London, 1687); not that Newton lacked
Important predecessors, such as Archimedes, Galileo, Kepler, and Huygens,
to mention only a few. It was, nevertheless, Newton who first created
a firm foundation for general mechanics. Even today, apart from some
changes and reinforcements, the foundation laid down by him provides
U8 with the most natural and didactically simplest approach to general
mechanics,

We shall at first investigate the mechanics of the single mass point
Or particle.






CHAPTER I
MECHANICS OF A PARTICLE
§ 1. Newton’s Axioms

The laws of motion will be introduced in axiomatic form; they
summarize in precise form the whole body of experience.

First law: Every material body remains in its state of rest or of uniform
rectilinear motion unless compelled by forces acting on it fo change its state

We shall at first withhold explanation of the concept of force introduced
in this law. We notice that the states of rest and of uniform (rectilinear)
motion are treated on equal footing and are regarded as natural states of the
body. The law postulates a tendency of the body to remain in such a
natural state; this tendency is called the inertia of the body. One often
speaks of Galileo’s law of inertia instead of Newton’s first law in referring
to the above axiom. We must say in this connection that while it is
perfectly true that Galileo arrived at this law long before Newton (as a
limiting result of his experiments with sliding bodies on planes of vanishing
inclination), we find it characteristic of Newton that the law holds top
position in his system. Newton’s word “ body ” will, for the time being,
be replaced by the words ‘ particle ” or ““ mass point.”

To formulate the first law mathematically we shall make use of definitions
I and 2 preceding it in the * Principia.”

Definition 2: The quantity of motion ts the measure of the same, arising
from the velocity and the quantity of maitter conjunctly.?

The “ quantity of motion ”” is hence the product of two factors, the
velocity, whose meaning is geometrically evident,® and the * quantity of

! We mention here, and in connection with what is to follow, the book Die Mechanik in
threr Entwickelung (8th ed., F. A. Brockhaus, Leipzig, 1923; translated into English
under the title The Science of Mechanics, Open Court Publishing Co., LaSalle,
Ill., 1942) by Ernst Mach. The study of this excellent critical history is recom-
mended to all students of mechanics, especially since in our book we must restrict
ourselves to the concepts of mechanies in = form ready for use and cannot delve
into the origin and gradual clarification of these concepts. This should not be
interpreted to mean, however, that we agree with Mach’s positivistic philosophy as
it is developed in Chapter IV, 4, of his book, with its attendant overemphasis of
the Economy Principle, the denial of atomic theory and the preference for formal
continuity theories.

: N ewton’s Principia, translated by Andrew Motte.—TRANSLATOR.

Evident, that is, once a reference system has bcen chosen in which the veloeity is to
be measured.

3
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matter,” which is to be explained physically. Newton attempts the latter
in his definition 1, in which he says that the quantity of matter is measured
by its density and volume conjunctly. This is obviously only a mock
definition, since density itself cannot be defined in any other way than by
the amount of matter in unit volume. In the same definition 1, Newton
also states that instead of ““ quantity of matter ” he will use the word mass.
We shall follow him in this, but shall postpone the physical definition of
mass (as well as that of force) until later.

The quantity of motion accordingly becomes the product of mass and
velocity. Like the latter it is a directed magnitude, a vector. We writes

(1) p=mv
and formulate the first law of motion in its final form:
(2) p=constant in the absence of forces.

We shall put the law of inertia thus formulated at the head of our
mechanics. It is the result of an evolution extending over many centuries,
and is by no means as self-evident as it appears to us today. The philosopher
Kant, for instance, says in his paper, *“ Thoughts on the True Estimation of
Living Forces,” written in 1747, long after Newton: ‘‘ There exist two kinds
of motions; those which have ceased after a certain time, and those which
persist.” The motions that in Kant’s opinion cease by themselves are,
according to modern ideas — and those of Newton — motions which are
attenuated by frictional forces and finally destroyed.

The expression * quantity of motion ” is unfortunately chosen in that
it does not take into account the vector character of mv. Thus a better
term would be the word “ impulse,” which conveys the idea of a push of a
certain magnitude in a definite direction that the given mv is able to impart,
by collision, to some body initially at rest. Since the term * impulse
is, however, used in a somewhat different sense in mechanics, we shall
have to retain the name “ quantity of motion,” or, in modern language,
momentum for the vector p. Instead of the law of inertia and Newton’s
first law of motion we can then speak of the law of conservation of momentum.

We shall now discuss Newton’s second law, the real law of motion:
The change in motion s proportional to the force acting and takes place in the
direction of the straight line along which the force acts.

* We assume that the reader is familiar with the elements of vector algebra. Since,
however, vector operations originated in close association with mechanics (includ-
ing the mechanies of fluids), we shall often have occasion to explain vector concepts
simultaneously with mechanical concepts.

As regards notation, vectors will be designated throughout by bold-faced letters;
thus @ for the angular velocity when regarded as a (axial) vector. In diagrams,
overhead arrows will occasionally be used.
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By “ change in motion * Newton undoubtedly means the change with

time of the proviously defined momentum p, hence the vector p (the dot
dp

a)"

by the letter F, our second law can then be written as

is Newton’s notation for the * fluxion ” p= If we designate the force

gince we called p the momentum, this law expresses the manner in which
momentum changes with time, and can, for brevity, be called simply the
law of momentum.

Unfortunately the law is often, especially in the mathematical literature,
designated as «“ Newton’s law of acceleration.” It is of course true that
if we treat m as a constant, (3) combined with (1) is identical to

(3a) mv=F: Mass - Acceleration=Force.

But mass is not always constant; it is variable in the theory of relativity
for example, where Newton’s formulation (3) prophetically turns out to be
the correct one. We shall treat a series of examples with variable mass in
§ 4, where we shall have a closer look at the interrelation between formula-
tions (3) and (3a). Incidentally, the mechanical system which is next
in simplicity to that of a single mass point, namely, the rotating rigid body,
leads us to an equation of motion along the lines of (3), in the form * rate
of change of moment of momentum (angular momentum)=moment of force
(torque) ’; a description in terms of angular acceleration, similar to (3a),
is not possible. An effect similar to the non-constancy of mass in relativity
must be taken into account: the moment of inertia, here replacing the
mass, changes with changing location of the axis of rotation in the body.

We must now seek to get a clear idea of the concept of force. Kirchhoff®
wanted to degrade it to a quantity defined by the product of mass and
acceleration. Hertz®, too, tried to eliminate and replace it by coupling
the system under consideration with other, generally hidden systems
interacting with the former. Hertz carried out this program with admirable
consistency. His method, however, hardly produced fruitful results; and
1t is especially unsuitable for the beginner.

We are of the opinion that we have at least a qualitative notion of
“ force 7 which we acquire quite directly through the feeling we experience
when using our muscles. In addition the earth has provided us with the
comparison standard of gravity, with which we can measure all other
{‘?TCGS quantitatively. TFor this purpose we need merely balance the effect

5 .
Gustav Kirchhoff, Vol. I of his Vorlesungen tiber mathematische Physik, p. 22.

6 . .
Heinrich Hertz, Miscellaneous Papers, Vol. II1, Principles of Mechanics, Macmillan,
New York, 1896.
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of a given force by a suitable weight. (By means of a pulley and string
we can let the vertical force of gravity act in a direction opposed to the
given force.) If, in addition, we procure a number of equally heavy bodies,
a ‘““set of weights,” we obtain a tentative scale with which to measure
forces quantitatively.

The same is true for the concept of force as for all other physical con-
cepts and names: word definitions have very little meaning; physically signi-
ficant definitions are obtained as soon as we prescribe a way of measur-
ing the quantity in question. Such a prescription need not contain the
details of practical procedure, but merely state a way to measure the
quantity in principle,

The above prescription, making use of gravity, has given a concrete
content to the right member of our law of momentum (3}; it has thereby
become a real physical statement. It is true that the left member still con-
tains the mass m, up to now undefined. This does not mean that the defini-
tion of mass is the only content of the law. For the law brings out that
it is p, not p itself or perhaps P which is determined by the force. We shall
see in § 4 how the definition of mass is obtained in case it is variable, the
relativistic mass serving as example.

Third law: Action always equals reaction, or: the forces two bodies exert
on each other are always equal and opposite in direction.

This is the principle of action and reaction. It says that for every
pressure there is a pressure in the opposite direction. Forces always occur
paired in nature. The falling stone attracts the earth just as strongly as
the earth attracts the stone.

This law makes possible the transition from the mechanics of single mass
points to that of compound systems ; it is therefore fundamental to the
entire field of structural statics, to name but one example.

We shall call the rule of the parallelogram of forces our Fourth law,
even though in Newton it appears merely as an addition or corollary to
the other laws of motion. The fourth law states that two forces applied
to the same mass point compound to act like the diagonal of the paral-
lelogram formed by them: forces add like vectors. This seems self-evident
since we equated the force F to the vector p in the Second Law. Actu-
ally, however, the Fourth Law, as Mach emphasizes, contains the axiom
that each force acting on a mass point causes it to change its motion as if
this force were the only one acting there. The parallelogram of forces
hence establishes axiomatically the independence of the effects of several
forces acting together at the same point, or, more generally, the principle
of superposition of forces. Of course the last statement as well as the
laws of motion preceding it are nothing but an idealization and a precise
formulation of our whole body of experience.
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1.1 Newton’s Axioms .
Having introduced the concept of force, we shall at this point introduce
that of work with the definition
(4) dW:F - ds=F ds cos (F, ds)
Thus the work does not equal “ force times distance ”’ as often stated, but
« component of force along path times path length” or * force times
component of path length along force.”
From the statement, ¢ forces add vectorially,” follows immediately the
complementary statement that “ work adds algebraically.” Indeed

F,+F,+---=F
leads to
(5) F,-ds+F,+ds+ ---=F-ds

by scalar multiplication with the distance ds. Here F is the resultant
force. The definition of the scalar product contained in (4) automatically
sees to it that, for example, in the first product of (5) only ds,, the com-
ponent of the distance in the direction of the force F,, occurs. Hence we
can also write instead of (5) that

(6) AW, +dWyt -+ =dW,

as stated above.

Related to the concept of work is that of power; power is the work done
in unit time.

In concluding these introductory remarks we shall have to agree on
how to measure the mechanical quantities that we have introduced. Here
we have a choice of two systems of units, the physical (or absolute) and the
practical (or gravitational) metric systems. The difference between them is
that in the absolute system the gram (or kilogram) serves as unit mass,
whereas in the gravitational system the kilogram (or gram) serves as unit
force. In the latter case we speak of a kilogram-weight and write

1 kg-weight=g - kg-mass.

The gravitational acceleration g is, however, a function of the location
on the earth, being greater at the poles than at the equator because of a
smaller distance from the center of the earth as well as because of diminished
centrifugal force. Hence the kg-weight is dependent on location; a kg-
weight sample cannot be transported. The gravitational system is therefore
unsuitable for precise measurements. The physical system has, in contrast,
been distinguished by the title,  absolute system of units.” We have
nevertheless become so accustomed to the gravitational system that in many
Cases where we should really say ‘ mass,” the word * weight ”’ has once
and for all made its way into our scientific language. Thus we talk of specific
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weight when we should say specific mass or density; and of atomic and
molecular weights — which surely have nothing to do with the acceleration
due to gravity.

Gauss, the originator of absolute measurements, decided in favor
of the absolute system after some hesitation. Initially he, too, was in
favor of introducing force as the basic unit, since it played a more direct
role than mass in his measurements of terrestrial magnetism. On the other
hand he wanted these measurements to encompass the entire surface of
our globe; he therefore saw himself forced to adopt as unit a quantity
whose value would not depend on location.

Below we have put the two systems next to each other and at the same
time introduced the derived units dyne, erg, joule, watt, and horse power (HP):

Absolute system (CGS) Gravitational system (MKS)
cm, g-mass, sec kg-weight m, sec
1 kg-weight =9.81-10% g cm sec~? ] g-mass= —W— sec? m

—9.81-105 dyne

lerg=1dyne-1cm 1 unit of work=1 %
1 joule=107 erg

1 mkg-weight = 1000-g-100 erg

=0.81-107 erg
=9.81 joule
1 watt=1 joule sec—1 I unit of power=1 kg m sec~!
1 kilowatt= 1000 joule sec—1 1 HP="175 kg m sec-?
(1]%1;_1 36 HP =75-1000-100-981 erg sec—?

=75-9.81 watt=0.736 kw

It should be noted that according to a decision of the pertinent international
commissions the CGS system was to be replaced by an absolute MKS system
beginning with the year 1940. In this new system the meter takes the
place of the centimeter, and the kilogram that of the gram as unit of mass,
while the second is retained as unit of time. This is in agreement with a
proposal of G. Giorgi, which shows its advantages fully only in electro-
dynamics with the addition of a fourth independent electrical unit (see
Vol. III of this series). In mechanics the proposed change would have the
advantage that in the definition of the joule and the watt the bothersome
powers of ten are eliminated. With the new larger units M and K the
units of work and power become

1 M2KS—2=107 cm? g sec—2=1 joule,
1 M2KS—3=107 cm? g sec—3=1 watt.
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1.2 Space, Time and Reference Systems 9
anit of force in the new system, called the newton, is thus

1 newton=1 MKS—2=105 em g sec—2=10% dyne.
This, too, can be regarded as an advantage of the Giorgi system, since now
the TNew unit of force is brought closer to the convenient gravitational
unit, the kg-weight, whereas the old unit of force, the dyne, is inconveniently
small for most practical uses.

The

§ 2. Space, Time and Reference Systems’

Newton's views about space and time seem to us moderns quite unrealistic
and appear to contradict his declared intention to base his analysis on
fact alone. He states:

« Absolute space, in its own nature, without regard to anything external,
remains always similar and immovable.

‘“ Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without regard to anything external, and by another
name is called duration.”

From these two quotations one would conclude that Newton worried
but little where absolute time was to be taken from, and how an immovable
absolute space was to be distinguished from one moving uniformly with
respect to it. This is all the more surprising since he put the states of
rest and of uniform motion on the same footing in his first law. On the
other hand Newton tried to clarify the distinction between absolute and
relative motion by his famous pail experiment.® In this experiment a
pail is suspended from a twisted thread and filled with water. The pail
is then suddenly released and as the thread untwists acquires a rotation
about its axis of symmetry. The surface of the water remains at first
level, although the relative velocity between pail and water is great.
Gradually the water is set in motion by friction with the walls of the pail,
climbs up the wall, and its surface assumes the familiar hollow paraboloidal
shape. Finally a steady state is reached in which the relative motion
between pail and water is zero; the ‘‘ absolute ” motion of the water in
space has, on the other hand, increased to a maximum, and with it the
curvature of the surface.

Actually the experiment only shows that the rotating pail does not
furnish a suitable reference system from which the motion of the water
can be understood. Is the earth such an unsuitable reference system ?

T .
Fhe b‘&‘gmner to whom the following somewhat abstract consideratioas seem un-
familiar may postpone the study of this section and of § 4 until a later time.
8 ¢
I have performed this experiment myself,” says Newton, probably with reference

to the natural philosophers, perhaps his compatriot Francis Bacon, who was wont
to describe the results of experiments he had not performed.
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It, too, rotates and furthermore describes an orbit around the sun. In §
general, what are the requirements that an ideal reference system has to |
satisfy in mechanics? By a reference system is meant a frame in space }
and time which will enable us to read off the position of mass points and |
the passage of time; we might take a Cartesian system of coordinates |
z, ¥, z, and a time scale, £. :

In practice we shall have to rely on the astronomers for this choice. |
The fixed stars furnish sufficiently constant directions for our coordinate |
axes, and the sidereal day furnishes a sufficiently constant interval of time. |
Theoretically, on the other hand, we are forced to recognize a disagreeable 1
tautology: that reference frame is an ideal one in which the Galilean law §
of inertia holds with sufficient accuracy, for a sufficiently force-free body. 3
Thus the first law is degraded to a formal identity or to the rank of definition.
The only positive, not purely formal content that the law retains\is the §
assertion that reference systems of the required properties do exist, All §
our experience indicates that one such system is approxinﬁted by astro-
nomical determinations of position and time. —_ 1

We mean essentially the same thing when we say that the laws of 3
mechanics presuppose the existence of an inertial frame, i.e., an imaginary
structure whose axes are trajectories of bodies moving purely under inertia.

The question now arises to what extent this ideal system of reference
is determined. Is there only one such system z, y, z, ¢, or are there perhaps
infinitely many such systems ? Newton’s first law gives the answer at
once, for it states that any two systems z, y, z, t and «’, %', 2’, ¢’ are equivalent
if they differ only by a uniform translational motion. In mathematical
form

X =x4 o4t

(1) y'=y+ Bt
2 =gyl
i =t.

We can generalize the transformation (1) by performing a rotation on the
spatial system x, %, z about its origin, which amounts to replacing z, ¥, 2z
in (1) by new space coordinates ¢, 5, { such that

2) R

This condition defines an arbitrary orthogonal transformation. With
% Br» ¥x the direction cosines, it yields

l 2 vy =2
(3) £l oy %y *x3
n | By B. Bs

{7 Yo vs3
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This scheme can be read equally well from left to right as from top to
pottom. Because of (2) the «, B, y satisfy the well-known relations

(4) 2“22252=27§=1a Z“kﬁkZ - -+ =0, ete.

If now we replace the 7, ¥, z in the right member of (1) by the £, 4, { of (3),
we obtain the generalized transformation scheme?

x Y z t

' Loy Ay oy O

(5) y | B B: Bs Bo

z Y1 Y2 Y3 Yo
10 0 0 1

The fact that the primed system x, y, 2, t' is just as good a reference
frame for the purposes of classical mechanics as the unprimed system z, ¥, 2, ¢
s called the principle of relativity of classical mechanics. In what follows (5)
will be called a Galilean transformation. It is a linear transformation in
the four coordinates; it is orthogonal in the first three, and leaves the
time coordinate invariant (¢’=t). The last statement means that the
principle of relativity of classical mechanics leaves intact the absolute
character of time as postulated by Newton.

A new situation arises, however, in the field of electrodynamics, particu-
larly in the electromagnetic theory of optical phenomena. Maxwell’s
equations, which form the basis of this field, require that the process of
the propagation of light in vacuo with the velocity ¢ be independent of the
frame of reference from which this process is observed. The front of a
spherical wave whose source is at the origin of coordinates is given by the
equation

(6) P d2=ct 2 or x'2y?t2?=c? 12

respectively, depending on whether we are describing the wave front in
the unprimed or the primed system. It is now convenient to change the
names of the coordinates in the following manner:

7 .
(7) =2y, Y=1=Ty, =23, 1CE=1Ty,

Whel‘e. ¢ is the imaginary unit; we introduce a corresponding change of
notation for the primed coordinates. Equations (6) then read

®), Sat=0, SaE=0,
1 1

']
Nolte that this table can be read from left to right but no longer from top to bottom,
since the transformation is no longer orthogonal.~TRANSLATOR.
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and the fact that the propagation of light does not depend on the choice of
reference frame demands that1® !

(9 ixf = ixi
1 1

Whereas Eq. (2) was an orthogonal transformation in three-dimensional |
space, we are dealing in (9) with an orthogonal transformation in four.
dimensjonal space. True, the fourth coordinate is imaginary. This, |
however, will not affect the existence of equations analogous to (3), (4)_-
and (5). The relation between the x, and the 2', arising from (5) is in
general called a Lorentz transformation, after the great Dutch theoretical {

physicist Hendrik Antoon Lorentz. We write it in the form of the general’
scheme

! Ty T3 T4
T 0y Oy Qg Oy
(10) x; Aoy Kgg Koy Hoy
Ty | gy Ggy  Kgg Oy
Zy | g ogp Oy Oty

This table shows at once that the time coordinate (in the imaginary form ;) §
is now involved in a change of reference system to the same extent as the |
space coordinates. As a necessary consequence of the invariance require- §
ment (9) the absoluteness of time is now destroyed. ]

More instructive than the general Lorentz transformation is the special §
one which we obtain when we leave two space coordinates, say x, and @, i
unchanged, and transform only z; and =z,. 1

Then all the «;; of the first and second rows of columns in (10) must
vanish, except for {

Oy = Ogp=1,

because x;=2x,, ¥3—2, (as read from left to right as well as from top to é
bottom). Furthermore we have the conditions analogous to (4), ‘

2 2 9 2 _ o 2 _ 2 2 _
(11) gt 0tgy = gg -t g = Gy +- oy, = ag o, =1,
and therefore

2 _ 2 o 3

Ugg = Kgq) Kgq= %y3-
Letting 8= 41, we can write

(11a) oy St

10 For one of the Egs. (8) must be the consequence of the other. In view of the linearity |
of the relation between them, one of the expressions (8) must be proportiona-l ]
to the other. Since the relation is a reciprocal one, the factor of proportionalitY i
must be unity. "
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and we must then put

(11b)
pecause of the other orthogonality condition Uagay -+ sty s=0. We now
make use of (11a, b) to solve for the primed coordinates in terms of the
u_nprlmed At the same time, with the help of (7), we go back to our original

coordinates 2, {, 2, t' to obtain

. &
Z = oc33(z—{~ z8cﬁt),
a3

Kgq= —d8diyy

(12)

The first of these equations shows that
—38c %3 —
(12a) 100 H=v

must be identified with the velocity with which the 2’-axis moves parallel
to the z-axis in the positive direction of the latter, as observed from the

“unprimed system. With the help of (12a) Egs. (12) become

2=y (2—01),

Finally we must determine «y;. To this end we use Eq. (9) which, in the
original coordinates, now simplifies to 2'2—c2¢'2=2%-—c2t2. Let us introduce
here the values of z’ and ' from (13). The factor of 2vzt vanishes on the
left. Comparison of the factors of 22 and #2 on the left and right yields

(13)

5 1
*33 = [ =0%c?

Ip the limit ¢ — o (13) must of course reduce to the Galilean transforma-
tion (1) with ay— B,=0 and y,=—v. To this end we must put §=—1
end must choose the positive sign of «,,. We then obtain the characteristic
two-dimensional Lorentz transformation

2 z— vt
(1~ gt

t—-2

(14) ' C2
(1— g2yt

f where ﬁzg, (I —pB2)t>0.

The relativization of the time in (14) and the change of scale of the

8Dg . . . . 2
Pace coordinate 2z, as embodied in the denominator (1-95)*’ are, as we
C
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have seen, a result of the fact that the velocity of light ¢ is finite, a fact }
with which the principle of relativity of classical mechanics is incompatible,

If it be true that all electrodynamic effects are propagated with finite }
velocity ¢, it follows that for such effects the Galilean transformation must 4
always be replaced by a Lorentz transformation, either in the genera] |
form (10), or the specialized form (14). We call this fact the principle of
relativity of electrodynamics. 1t is evident, however, that mechanics too ]
has to adapt itself to the fact of the finite propagation velocity of light.
Now all velocities occurring in ordinary mechanics are quite small com-
pared to ¢. This is the reason why for the purposes of mechanics we can, §
as a rule, neglect the change of scale of the space and time coordinates §
indicated by (14).

The wealth of physical facts embodied in the Lorentz transformation
will be discussed in the third volume of this series. Here we shall only {
investigate the changes that we have to make in the concept of the funda- }
mental quantity p, the momentum, as a result of our new relativity principle.

We have called p a vector. This means that the three components of }
p transform just like the coordinates themselves [i.e., the components of
the radius vector r=(z, y, 2) ] in a change of the system of coordinates. 4
We therefore say that p is covariant to r.

This is valid only from the viewpoint of the Galilean transformation,
where the time is regarded as absolute. From the viewpoint of the Lorentz 1
transformation the radius vector is a four-component quantity, a four-vector .

(18) X=(%;, Xy, T3, Ty).

Our relativistic momentum will similarly have to be a four-vector, i.e., |
must be covariant to X, if it is to have a meaning in relativity theory. We
arrive at this four-vector in the following manner: ‘
(@) (15) being a four-vector, the coordinate distance between two i
neighboring points

(16) dx=(dz,, dz,, dz;, dzy)=(dx,, dx,, das, icdt)
18 also a four-vector. !

(b) The magnitude of this distance is certainly invariant under a Lorentz |
transformation. Apart from a factor éc, it is given by

c?

(”’ dr = [a12 =} (@ dag+ o) |

We follow Minkowski in calling dr the element of proper ttme; in contrast
to dt it is relativistically invariant. We shall factor out d¢ in (17) and
introduce the ordinary velocity v of three dimensions, to cbtain 4
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\4
(17a) dr:dt(l—l—’é) = dt(1— B2)%,
(c) Division of the four-vector (16} by the invariant (17a) yields
another four-vector; we call it the four-vector velocity

(oo ),
(18) (1— g\ de dt de z)

(d) Rarlier we derived the momentum vector p by multiplying the
velocity three-vector by a mass m independent of the reference frame. We
shall similarly deduce the momentum four-vector p from the four-vector
(18) by multiplication by a mass factor independent of the frame of reference.
We shall call this mass factor the rest mass m, and obtain

T E"E—ls ‘E':_a’ d_ﬂ'ls, el
(19) ‘ p= (l_ﬁﬂ)i(dt dt  dt ?’c)
It is proper to call the quantity in front of the parenthesis the moving
mass (since it reduces to the rest mass for §=0), or simply the mass. We
therefore assert that

_ My .
(1t

Théxpression was first derived by Lorentz in 1904 under very special
assumptions (deformable electron). The derivation from the principle of
relativity makes such special assumptions unnecessary. Eq. (20) has been
confirmed by many precision experiments with fast electrons. Together with
optical experiments, notably that of Michelson and Morley, it forms the basis
of the theory of relativity. Here we have proceded in inverse order and
deduced Eq. (20) from the principle of relativity in what appears to be a
very formal procedure. This is not only logically admissible, but especially
serviceable in view of the brevity of these introductory explanations. In
§ 4 we shall discuss what changes in the further application of Newton’s

laws of motion will have to be made as a result of the velocity-dependence
of mass.

(20) ' m

At this point we should, if only sketchily, bring to a conclusion the
question of the permissible frames of reference; to this end we must pass
from the special theory of relativity treated so far to the gemeral theory of
Telativity (Einstein, 1915). In special relativity there are allowed reference
Systems which are obtained from one another by Lorentz transformations,
and forbidden ones, such as, for example, those that are accelerated with
respect to the former. In general relativity all possible frames of reference
are admitted. Transformations between them need no longer be linear
afld orthogonal as in (10), but can instead be given by arbitrary functions
Tre=[fi(xy, x,, 7, 2,). Hence we are dealing with systems which are moving
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and are being deformed with respect to each other in any way desired. Ag)
a result space and time Jose any vestiges of the absolute character which
they held in Newton’s fundamental analysis. They become merely classifi.]
cation schemes for physical events. Euclidean geometry no longer suffices]
for this classification and must be replaced by the much more general metric)
geometry advanced by Riemann. The task then arises to give such a;
form to physical laws that they will remain valid in all frames of reference ]
here considered, i.e., a form that remains invariant under arbitrary point}
transformations 2,=f,(z, - - - ,) of four-dimensional space. The positive]
content of the general theory of relativity is precisely the possibility of’}
this task. We cannot in this volume delve into the mathematically very{
involved form which the laws of mechanics take on in their invariant
formulation. Suffice it to say that the general theory leads to a derivation
and a more precise formulation of Newtonian gravitation.

We conclude with a remark about the name, theory of relativity. The 4
positive achievement of the theory is not so much the complete relativiza-
tion of space and time, but the proof that the laws of nature are independent
of the choice of reference system, i.e., that events in nature are invariant
under any change in the observer’s view point. The names, ‘‘ theory |
of the invariance of natural events,” or, as occasionally proposed, “ view- 4

point theory,” would be more appropriate than the customary name, general
theory of relativity. '

§ 3. Rectilinear Motion of a Mass Point

Let the motion of the particle take place along the z-axis. Only the ]
z-components of any forces present will have any effect. Let X denote
the resultant of these components.

We have v—=v= % and pzmiﬂi Then

dt dt -’
(1} p=X
and, with constant m,
dx

We wish to study the integration of this equation of motion for the }
three cases : X is given as a pure function of the time, [X=X(f)], of 4
the position, [X = X(z)], or of the velocity, [X=X(v)].

(@) X=X(2).

Immediate integration yields

t
(3) v vy — }nfxmdt: LZ().
tp
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o Z(t) is by definition the time integral of the force and equals the

Ii;fnge in momentum during the time from ¢, to ¢.

‘ A second integration leads to the equation of the trajectory,

t
n x—x0=vu(t—tu)+$fZ(t)dt.
tﬂ

(b) X=X().
This is the typical case of the force field given as a function of position.
Integration is achieved ‘(:786 of the principle of the conservation of energy.

We multiply (2) on both’sides by ‘f_g,

mBEde_ gdr
(8) dtde~ @t

The left member is now a complete differential,

L fm(deps,

a2 dt)

In agreement with the general definition of (1.4) we write for the right
member dW=Xdx and call dW the work done over the path dx. The
equation thus arising says that the change in kinetic energy equals the work

done.
For we define

(6) T—F,

m

inz—g_f'v2

a8 the Linetic energy or energy of motion of the mass point; the older name,
live force (Leibniz), shows the ambiguity of the word force (he distinguished
live force, vis viva, i.e., kinetic energy, and motor force, vis motriz, our
present-day force; even Helmholtz, as late as 1847, entitled a treatise

dFealing with the conservation of energy ‘ Concerning the Conservation of
orce )

To the definition of the kinetic energy we add that of the potential
energy V,

7 x
) dV=—dW=—Xdz, V=E,,— | Xde.

In one-dimensional particle mechanics this definition suffices; in the case
of two- or three-dimensional force fields the existence of ¥V depends on
th.e eharacter of the fields (cf. § 6, Part 3). According to (7) V is deter-
Mined only to within an additive constant.

With these definitions the integrated Eq. (5) yields the law of the
“Onservation of energy,
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(8) T+ V =constant=%.

Here E is the energy constant or fotal energy.

The principle of the conservation of energy possesses not only af
exceedingly great physical importance, but also remarkable mathematicg
power. For it performs, as we have seen, not only the first integration
the equation of motion (hence its alternate name, ‘‘ integral of energy ’:
but at once makes possible — at least in the present case (b) — a secong
integration as well. If we write (8) in the form |

() -2 E-7 @),

dt m

we can solve for dt,

so that

(9) t—‘o—“"(gb)i (ijy )i‘

Thus ¢ is a known function of x, and therefore x can also be expressed
terms of ¢. (9) is then the completely integrated equation of motion. §

(c) X=X{v).
Now the equation of motion reads
dv
me = X (v)
which we rewrite as
thereby at once obtaining
. ”
(10) t—tosz‘%’:F(v).
Yo

This also allows us to solve for v in terms of £, v=f(¢), so that
dax
z=J®,

from which we conclude that

t
x—x0=tff(t)dt.
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Examples

1. FrEE Fain NEAR EarTH’S SURFACE (Falling Stone)
We take the positive z-direction as vertically upward. The force is
constant,

(11) X=—myg,

ie. independen\f\gf A and v. Here all three methods of integration (a),
(), (c) camn be applied.

We shall carry out (@) and (b), and postulate explicitly that the ** gravita-
tional mass ” and the  inertial mass * be equal,

( 12) Minert = Myray -

Mypers, i the mass defined by the Second Law; mg,, is the mass occurring
in the law of gravitation and hence also in our force equation (11).

Bessel recognized the necessity for testing Eq. (12) experimentally,
by means of pendulum experiments.!! A much more precise experimental
proof was furnished by Eétvés with his torsion balance. Later on, Eq. (12)
gave the first impulse to Einstein’s theory of gravitation.

() ¥=-—g. With suitable choice of the integration constants (v=0

and z=h for t{=0) we end up with

r=—gt, x=h— %tz.

(b) Since dW=—mgdx, V=mgxz and T+mgz=E. If v=0 at z=2h,
we must have E=mgh; therefore

% v2+mgx=mgh.

From this we get for the particular value z=0 that +2=2gh, or

(13) v=(2gh)t.
Inverting this equation we obtain

13 =2,
(13a) h= %

which is the height to which an arbitrary mass must be raised in order
to attain, falling through this height in the gravitational field, a specified
velocity ». The introduction of this height % instead of the velocity v is
convenient, especially in certain engineering problems, such as the

u Incidentally we would like to direct the reader’s attention to an interesting sentence
occurring in Newton’s Mechanics. At the beginning of this work, under Definition 1,
Newton says: “Through very carefully performed experiments with pendula I
have verified that mass and weight are proportional.”
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height to which water rises in a Pitot tube,? the pressure head in a centrifug, ;_i'
X

etc. The height to which the water surface climbs in Newton’s pail expery]
ment is similarly given by (13a). 5

2. Freg FaiL From o GREAT Distance (Meteor) ’
Now the force of attraction is no longer constant. Instead we mus
use the law of gravitation

(14) m¥T . _ mMG,

where m is the mass of the meteor, M that of the earth, G the gravitationa
constant. Instead of the coordinate x we have introduced the distance #
of the meteor from the center of the earth. Since the force is now a functi 3
of r, method of 1ntegrat10n (b) should be used. a

(14) yields

so that mM@G can be eliminated from (14),
@& e
an = "9
With this notation (7) yields
AV = —dW=mgar %,

so that the potential energy, with zero level at infinity, becomes

(15) V(r)=—mg%-

Eq. (8) therefore gives

m (dr\2 mga“_ mga’,
2 (dt) r W=- R

where R is some hypothetical initial distance from the earth’s center
which the falling mass was in a state of rest. We thus obtain :

dr 1 I+
(16) 7 =a[20(G-3)]
and, corresponding to (9),
1 dr
(162) t_a(zg)*f(l__l)*
r R

1% A hollow tube used in fluid flow to measure the dynamic pressure. It is often used (.)n '
airplanes as an airspeed indicator. Cf. Glazebrook, Dictionary of Applied Physics
V, p. 2—TRANSLATOR. 3
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We need not do the integration indicated in (16a) in detail, since only

WO special cases of (16) are of interest to us:

R=ow, r=a.

(@)

The meteor reaches the earth with the velocity

ie., a free fall in the earth’s gravitational field from infinity results in the
same velocity at the surface of the earth which would be achieved by a
free fall from a height A=a equal to the earth’s radius under a constant
acceleration due to gravity g [cf. Eq. (13) ].

) B=a-+t+h. h<a r=a.

Here we are concerned with a first order correction to the velocity of
fall (13), taking into consideration the decreasing gravitational acceleration,
but assuming that the meteor falls from not too great a height. From
(16) we derive

i~ [29“(1—j)]*= @gap 2L+ )
a

—gap (B (1—32+- ) = 2ghp(1— g5+ )

3. Frer FaLL IN AIR

We shall assume that the air resistance is proportional to the square
Of. the velocity. This assumption, introduced by Newton, agrees quite well
with experience if the falling body is not too small and its velocity is neither

fiol&parable to that of sound, nor vanishingly small. The resultant force
18 then

X (v) = —mg-+av?,

:_Fhere the signs indicate that the air resistance opposes the force of gravita-
on.  Here method (c) of p. 18 applies, and the equation of motion becomes

17 d
( ) = —g ot

If r . .
We put n%———bz, it goes over into

dv

a—t ——g(l—bzvz).
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From this we obtain the analogue of (10) with ¢,=0,

_dw 1 1 _ 1. 1+bv
—gdt= ?(1—bv+1+bv)’ —gt=33 ln(l_b‘u)’
so that
i+2”=e-2bgt
— 0
and
(18) by =6—2bg¢_1 _ sinh pgt — —tanh bgt,
e—2bgt+1 cosh bgt

where sinh, cosh, and tanh are the hyperbolic functions. [bv| hence gro
monotonically from 0 at {=0, and approaches the value 1 as ¢t — . Th4
limiting value of » itself is
1 [(mg\t

=5 (%)

value %3; becomes equal to zero.

We make use of Eq. (18) to obtain the first order correction due to ai

vacuo. From the series expansion

tanh o =

ol
sinhac#m_i—ﬁ__a(l__ocz
cosha al

we obtain, according to (18), with a«=bgt,

v=—gt (1——(@;—)2).

4. HarmoNICc OSCILLATIONS

Harmonic oscillations occur whenever a restoring force X proportiona-l'f
to the displacement z acts on a mass point m. We call the proportionality
factor %, so that 1

X=—kx
and the equation of motion with constant m is

d*x

(19) maé—-—-kx.

Since the force is a given function of the coordinate [case (b) of p. 1'7],_-':T
we make use of the rule given there and apply the integral of energy- §
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We mus sherefore first determine the potential energy of the harmonic

pinding force. We have
AW = Xdo = —2d(a?),

so that, according to (7), with a suitable choice of the zero of V,
xr
_ _k 2
V= JdW#2x.
0

The equation of energy is then
mv?+ka2=2E.
As our initial conditions we may choose

rT=0a

(19a) at t=0: {v=¢=0.

As a result 2 E takes the value ka?, and

dz\2 _ ko 2
(F) = 5 (@ =2,

(o) dt = w{—‘”}—);.

A quadrature, incorporating the initial conditions (19a), yields

(20) wi=sin"1 (j:_i — g)with w= (1%)%

An inversion finally gives
(21) a:=asin(wt—{——g):a cos wt.

'Ijhe physical meaning of the abbreviation w is therefore clear. It is the
Gll‘_cular frequency, i.e., the number of vibrations in 2 units of time; T
being the period of oscillation, » the frequencyl®, we have the relation

(22) 2w

w=§,~=2'n'v.

With the help of this abbreviation (19) can also be written

(23) ¥+ wirx=0.

: .The equation of energy has the advantage that it always leads to the

W‘;fll‘ed end, no matter how the force X depends on . In our case, however,
ere X is linear in z, another much more elegant method exists. It is

—_

12
As Opposed to w, v is the frequency, the number of vibrations in unit time.
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(24) x=CeAt,

provided A is chosen to be one of the roots of an algebraic equation obtained]
from our differential equation. This furnishes a particular solution. Thej
general solution is obtained by a superposition of all such particular solutions
m the form :

(24a) T = 2 C;elit,

The algebraic equation in A is obtained by substitution of (24) in (23), a.n;
is here of second degree,

A2 |- w2 =0 with the roots A= +iw.
The general solution is therefore
(24b) z= 0,0l (et
Constants C;, C, are determined by the boundary conditions (19a):
z=0 , Cjtw—Chwi=0: C,=0C,.

z=a , a=0,4+0, =20 C=%

The final solution of the problem is, in agreement with (21),
Z=a cos wi.

We shall later (Chapter III, § 19) make extensive use of this method for}
damped, forced, coupled, ete., oscillations, provided these can be describedg
by linear differential equations. The title, “ harmonic oscillations,” which
we have given to this part, calls attention to the fact that the restorlng
force is linear in the coordinate, so that the resulting motion can be repre- §
sented by a single constant frequency w. The method fails in case the
binding force is anharmonic, i.e., non-linear; in that event one has 1‘:0
resort to the less elegant method of the energy integral. ;

5. CoLrisioN or Two PARTICLES

Before the collision (ef. Fig. 1) let the masses m and M have velocities

v, and ¥V, respectively; after the collision they proceed with ve10c1t168
v and V.
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1.3
% ir-
& .4
* @
M
¥ie. L. Collision of two masses M and m; velocities before collision v, and V,, after

collision ¥V and v.

No matter what the nature of the collision, whether elastic or inelastic,
Newton’s axiom action=reaction >’ must be valid for the forces trans-
mitted between m and M, and also for the time integral Z of these forces.

Therefore, according to Eq. (3),

(25) m(v—vy)—=ZL=—M(V—V,),
and hence also

(25a) mv 4 MV =mv,+ MV,.

This equation states that the total momentum of the system is conserved.
Let us now introduce in (25a) the coordinate of the center of mass of
the system,

_mx+ MX |
(25b) §="¥m
We obtain
£= &o-

This result says that the collision has no effect on the velocity of the center
of mass.

Thus the center of mass of a shell fired in vacuo continues undisturbed
in its parabolic path, even if at some point along the path the shell bursts
into splinters each of which seems to follow an independent trajectory
of its own.

So far we have two unknowns, v and V, and only one equation (25a).
In order to find the complete solution of the collision problem a second
relation is evidently necessary. We define an elastic collision as an inter-

action in which the kinetic energy as well as the momentum is conserved.
We then require

26 m M m M
% A i
or

‘ m(v?—o2) = M(VE—V2).

But fI‘()m (25)
m{v—vy)=M(V,— V).
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Division of these two equations yields

v+vy=V,+V,

or
(26a) V—v=—(V,—v,).

This equation states that the relative velocity of one mass with respe 4

to the other after the collision is equal and opposite to that before th
collision. -

The combination of Eqs. (25a) and (26a),
mv+ MV =my,+MV,
v—V=—v,+7V,
now completely determines the velocities after the collision,

m - M oM

@) - m+M°+m+M
V— M—m 4 _2m_

m+M' O +M

V,

Notice that the determinant 4 of this ** transformation >’ from 1n1t1
values vy, V, to final values v, V has the absolute value 1. For

m—M 2M

Aﬁm-}-Mm—l—M_ (M-—-m)2 dm M —_1
2m M —m| m+ M (m + M) : 3
m—+Mm+ M k-

This means that if we allow the initial velocities to have a certain range}
of values, the transformed surface element in »-V space has the same a.r.
as the initial surface element; the transformation is area-preserving (cf
Fig. 2a). This law is important in collision processes in the kinetic theory]
of gases and is related to Liouville’s theorem (cf. Vol. V, this series). 1

by, v
AVO, VWU,V % uV
““ ™
B, Y, Uﬂa% .
——" > U ¥
Fia. 2a. Velocity domains before and Fic. 2b. In the case of two equal masseﬂf
after collision. The mapping is area- m=M, the mapping is not only ared-g

preserving. preserving, but also angle-preserving.
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Let us consider the case of two equal masses such as two billiard balls,
m=M. Egs. (27) become

(2734) V= VO’ V= Y.

Now the transformation is not only area-preserving, but angle-preserving
as well; cf. Fig. 2b, in which the transformed rectangle is obtaired from the
initial one by interchange of its sides. In particular, if, in a central collision
(head-on collision), in a billiard game, one ball is initially at rest, then the
other one transmits all its velocity to the former and thereby comes to rest
[cf. (27a) with V,y=0].

If, on the other hand, one mass is very great compared to the other,
M3>m, the large mass retains practically all its original velocity after the
collision, while the small mass follows the large one with a veloeity equal
to that of the large one minus the original relative velocity. For with
m <M the Tgs. (27) can be simplified to

(27b) v=—vy+2Vy=Vi—(vg— Vo), V="V,

To complete the discussion of collisions we shall briefly go into inelastic
collisions. In atomic physics one investigates inelastic collisions (“ colli-
sions of the second kind »’), in which the colliding particle, say an electron,
loses part of its energy in order to “excite” the atom with which it
collides; such an excited atom has been raised from its ground state to a level
of higher energy. Since in this type of process part of the initial energy is
lost as far as the motion after collision is concerned, this motion can no
longer be calculated. using the formulas of elastic collisions. (Cf. problems
L1 to I.4)

We shall here limit ourselves to the  completely inelastic collision,”
which is often considered in engineering problems. Such a collision is
defined by the condition

4

v=1"V,

Le., after the collision both masses m and M proceed at the same velocity,
as if rigidly coupled together. The equation of momentum, as emphasized
earlier, retains its validity under all circumstances; it becomes

(28) (m+ M)v=mvg+ MV,

and alone is sufficient to determine the sole unknown v. We would like to
know the energy lost in this collision, which is

' m.2 Jll 2_m_ _+M 2
2'00—1— 5 VO 5 v,

OT, after a simple elimination of » with the help of (28),
(28a) £ vy — Vo)2.
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The loss of energy equals the kinetic energy of a certain reduced mass
which moves with the original relative velocity. pu is defined by

1 mM
(28b) P ?—n—{—-—: therefore p = — 71

The theorem contained in Egs. (28a, b) was first advanced by General}
Lazarus Carnot. (General Carnot was a mathematician and the organizer of}
universal military service during the KFrench Revolution, as well as thq
father of Sadi Carnot, whose name has become famous in 13hermodynamic:s;.)j

§ 4. Variable Masses

The illustrations cited below will aid us in a critical evaluation of Newton’s
second law. We put this law in the form (1.3), “ change of momentum
equals force,”” rather than in the less general one (1.3a), ‘‘ mass  acceler.
tion equals force.” We shall now learn how the rate of change of momentumg
i8 to be understood. We shall show that even in the case of variable mass §
the general form (1.3) may under certain circumstances reduce to (1.3a). }

Let us consider a familiar example: a sprinkler wagon wets the aspha
on a hot summer day. The power of the motor is barely great enough:
to overcome the combined friction of the ground and wheels, of the air, and §
in the axle bearings. The vehicle therefore behaves as if under no forces
Let m be the mass of water in the tank at any instant--the constant mas
of the empty vehicle. Let the amount of water squirted out per un
time be p= —m, its exit velocity toward the rear, ¢ as seen from the wagon,
or v—¢ as seen from the street, v being the speed of the vehicle.

If we were to use the formula (1.3) mechanically, we would obtain

. . d
(1) P=p= 7 (mv)=0
from which would follow
(1a) mo = uv.

The acceleration of the wagon would then be independent of the exit
velocity g. This is paradoxical, since one would expect the recoil (cf. gun)
from the outgoing water jet to have some effect. 1

Actually we have not used the correct expression for the rate of change
of momentum meant in (1.3), for it should consist not only of the member }
taken into account in (1), but also of a term giving the momentum contained ;
in the water jets. This latter is u(v—g) per unit time. Explicitly, |

Py=mvy, Py g= (m~+dm)(v+dv)+pdi(v—gq)

so that the corrected rate of change of momentum becomes

(2) p=2(mv)+p(v—g)=0,
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1.4
or remembering p=—m and simplifying,

From the viewpoint of (1.3a), the recoil of the water leaving the vehicle
acts as an accelerating force on the latter, just as in the reaction water wheel
used in rotary lawn sprinklers.

Instead of the sprinkler wagon we could have chosen as our example
the interplanetary rocket, with which one might reach the moon. The
rocket would be propelled by the expulsion of explosive gases. See problem I.5.

We generalize this result in two statements which are equivalent to
Eqgs. (2) and (3), respectively, of our illustrative example:

Either we take the viewpoint of (1.3), where we must then add to the
change in momentum contained in the body in question the momentum
convectively given off or added per unit time. The latter is to be calculated
:n the same frame of reference as the momentum of the body under investiga-
tion; the sign of 7 takes care of the correct sign for this term. The equation
of motion then becomes

() & (mv)—mv =F,

where v’ is the convective velocity. In our case we had —m =y and
v]=[v]—q.

Or we take the viewpoint of (1.3a), in which case we must, however,
add the recoil momentum gained or lost per unit time as a kind of external
force. We then obtain the equation of motion in a form analogous to (3),

(5) mv=F+mv,.

Via is the relative velocity of the convective momentum with respect to
the body under observation, measured positive in the same sense as V.
In our example we had |v,,|=—g¢ and again —m=p.

Two special cases deserve our attention:

(@) v'=0. The elements of mass gained or lost have zero velocity
and therefore do not carry any momentum. In that case the equation
of motion has the Newtonian form p=F. Examples: water drop, chain,
Problems 1.6 and 1.7.

(6) v'=v or, equivalently, v,;=0. The equation of motion has the
_fOTm, mass - acceleration = force, in spite of the fact that the mass involved
I8 variable. Example : rope hanging over the edge of a table, problem 1.8.

In case (b) the Carnot energy loss, Eq. (3.28a), is zero; therefore the

®quation of energy applies in the usual form. In case (a) the form of the

*hergy conservation law valid for a given problem is not obvious and must
5t be investigated.
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We conclude these instructive remarks with the problem of the relativistic
variation of mass. We shall talk specifically about the electron, even
though equation (2.20) is of course valid not only for it, but for all
masses. Here the variation of mass is a purely internal affair of the
electron; there is no question of any momentum gained from or lost to
the surroundings.. As in case (a) the equation of motion is therefore p=F,
l.e., In view of (2.20),

d My V
(9) ch([l —~ /?2]*) =¥
Let us first consider the rectilinear motion of an electron; F acts longitudi-
nally, that is, in the direction of v, so that F=F, and v=v.
We shall change Eq. (6) to the form ‘ mass - acceleration—force,” a
customary procedure in the early part of the century, though unnecessarily
complicated. To this end we carry out the differentiation on the left,

ﬁ’mﬂ dt (1—p%)" %( +1118§2)

My
(1 —ﬁz
Now B=wv/c so that

(6a)

}é’:g and hence vﬁ/’a;: B,
Consequently Eq. (6a) becomes

Mo 2 Mg
(6b) (1—,32)%(1+1—ﬂ2) (1—,32)= = Frong:

The longitudinal mass multiplying the acceleration ¢ is therefore

(7) Mong = (I_L;z); '

If, on the other hand, F acts transversely, i.e., normal to the trajectory, 3§
only the direction, not the magnitude of the velocity is altered. In that 3
case B is zero; (6) simply yields

Mo

T

For this reason one introduced at the time a transverse mass different from
the longitudinal mass and given by

8 = ...
( ) Mirans (1 _ﬁz)i

In view of these complications we emphasize that the above distinction
between two kinds of masses becomes unnecessary if we use only the
rational form (6) of the equation of motion.
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Next we wish to determine the form of the equation of energy in
relativity theory. Let us therefore multiply (6) by %zv: Bec. In the

right member we obtain

(9) F% = Eid‘[_:/' =work done, or power.

In the left member we have

moc? B (L) =matBR(L— B

We can at once convince ourselves that this is a total derivative in £, viz.,

ed_ 1 .
(10) : meC &1~ gy
Since (10) must be equal to (9), the rate of doing work, (10) must be the
time rate of change of the kinetic energy 7. We therefore have

1

Tt

-+ const. ) .

We must put the constant equal to —1, because T, by its nature, must
vanish as B vanishes. Hence the relativistic kinetic energy is

(11) T:m°c2(f1—.._1_l@;z_]é_l)'

In view of (2.20) we can also write this as
(12) T — c2(m —my).

In words: the difference in energy between a moving electron and one at rest
{(which is nothing but the kinetic energy or “ live force ) equals the difference
between the masses of the electron in motion and at rest, multiplied by
2. Thus we have verified for the simplest case the law of the equivalence
of mass and energy (law of the ‘“inertia of energy »},  This important law
is fundamental to the whole field of atomic weight determinations and to
nuclear physics and its applications to cosmology.

For the sake of completeness we point out that for small B8, (11) can
be expanded in a series which yields to a first approximation the elementary
expression for 7,

T:mccz(%32+§ﬁ4+ ---):%’02182(14—232—{— ...)_,_’”_%9,02’

a8 is to be expected.
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§ §. Kinematics and Statics of a Single Mass Pomt
in a Plane and in Space i

Kinematics deals with the geometry of motions regardless of their 1
physical realization. Statics!4 is concerned with forces, their composition §
and equivalence, without regard to the motions caused by them. ]
(1) Plane Kinematics ]

We shall begin by writing down the formulas for the decomposition i
and composition of velocity and acceleration in Cartesian coordinates, |

| I

Fra. 3. Decomposition and composition of velocities in a plane; intrinsic coordinates
s and n.

Velocity :
1) v=(0,0,) = (5 %) = (& 9);
@) [vI= (4 §%i=0.
Acceleration.:

(3) V= (i, ) = (T ) = (&, 9);
(4) | V| =(z2+y2)%

Instead of decomposing velocity and acceleration in Cartesian coordinates
we can also decompose them in terms of the intrinsic coordinates of the
curve described by our mass point. Let s be the length of arc, subscript 8
denoting the path direction varying from point to point along the curve,-

14 The name staties is actually not appropriate, for it refers only to equilibrium, whereas
the content of statics applies to problems of motion as well as of equilibrium. The
correct name would be dynamics. This term has been in historical usage for the
study of motions caused by forces, and is therefore not available for the field which
1ts name implies, i.e., the analysis of forces.
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subscript # denoting the direction normal to s at any point of the curve.
We then have

(5) v,=+v,v,=0.

This is trivial. The decomposition of V into v,and v,, is, however, significant.
If we let o be the angle between the tangent to the path and the z-direction,

we have

(6) ' ¥y =1V,, COS oc+?)ysin o
for the tangential acceleration, and

(7) ¥, =—10,sin e+ v,c08«

for the normal acceleration.

Now
s g 9T Vn Lo _dy_y_ Yy
CO8 &= o= == sin o =0 =% =10
so that
.1, . . 1d, .o 2
(8) V= a(vxvx—{—vyvy) = 5o 1 (v3+vy)
_ld o dv__ s
’_%d—tv_dt'"lvl

This equation states that the tangential acceleration is the change
in magnitude of the velocity, no matter what its change in direction may be.
Eq. (7), on the other hand, yields

gy —y& _ v

9 NS PR DT A
9) Un= 5 00y ¥ =y (YY) =V LT h
where %J is the curvature of the path.1®

The normal acceleration therefore does not depend on the change of
velocity, but only on the velocity itself and on the shape of the trajectory.

1f, in particular, %’:0, the acceleration is normal to the velocity and hence
to the path.

\?Ve shall now derive the same relations in a direct, differential-geometrical
fashion by means of the hodographl® introduced by Hamilton.

1: Cf., for example, Franklin, Treatise on Advanced Calculus, p. 295, —TRANSLATOR.
The name hodograph =path writer is misleading; it should really be called velocity
writer, or better, polar diagram of velocity.
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Fi1c. 4a., Hodograph of motion in Y
a plane. Velocities v, and v, are 4
laid off from the pole O in the polar Fie. 4b. Trajectory and radius of |
diagram,. curvature of motion in a plane,

The meaning of the hodograph becomes clear when we compare Figs.
4a and 4b. Fig. 4b shows the trajectory in the xy-plane. The velocities 5;
at two of its neighboring points, 4s apart, are indicated as tangents to the
path; their included angle is de. The same angle de also occurs at the
center of curvature M. p being the radius of curvature, :

(10) As=pde.

The same two velocities are plotted in Fig. 4a from a common origin O, 'l
with directions preserved. Consider the two neighboring vectors O1 and
02 with de as their included angle. Projection of 1 on 02 gives point 3.

Av=12 is decomposed into Avsz?ﬁ and A'un=1_§. We therefore obtain,
in agreement with (8) and (9),

32 _vi—u_ Av_dv
8T At T At At dt
y _ﬁ___Ae-vA Ae 2_’0”,
B T A TR PR

the latter by recalling (10). Cf. problem 1.9.

(2) The Concept of Moment in Plane Statics and Kinematics

The moment of a vector quantity E about a given point of reference
O is defined as the vector product of the radius vector r from O to the point

of application P of the vector E by the vector E itself, i.e.,

(11) N=rxE.
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E
p

e

0

—
F1e. 5. Moment of an arbitrary vector quantity E about an arbitrary point O.

N is therefore represented by the area of the parallelogram formed by r
and E together with the sense of rotation of r into E as indicated by an
arrow in Fig. 5. In magnitude,

(11a) |N|=1|E|=r|E|sin a,

where 1 is the ““lever arm ” of E about O. If we take for E a force F, we
obtain the moment of the force F, or torque

(12) L=rxF.

The moment of a force F is a fundamental concept of statics, whose discovery
goes back to Archimedes himself. Let us denote the Cartesian components
- of F by X and Y. Elementary vector algebra readily gives

(12a) L—a«Y—yX.

The concept of moment is of importance in kinematics and kinetics
as well. ILet us still restrict ourselves to problems in a plane, and form
the moment of velocity=r XV
the moment of acceleration=rXVv
the moment of momentum=angular momentum=r Xp=m{r Xv)
In Cartesian coordinates, with (12a) as a model, we have

(13) I XV=xy—yz, IXV=zj-—-yZ.

Between the moments of velocity and acceleration, there exists the
relation

(14) rxv="2

dt(r)(v).

It derives from the fact that %; =v and vXv=0, so that

(14a) d%(rxv):rx%%—kvxv:rxir.
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The customary proof by means of decomposition into coordinates r '
exactly parallel to Eq. (14a): ;

(14b) 2By —y%) = 2y +2Y —yr— YT =Y —YI.

If in Fig. 5 one thinks of the velocity v of point P replacing the arbitrarg
vector E, with P describing an arbitrary path, one can read off anotheg
simple relation, now between angular momentum and the so-called are ,""
velocity. Indeed the infinitesimal element of area d§ swept out by the r&dJ 7
vector r with origin at O is equal to one half the area of the parallelograsd
r X ds, so that the areal velocity

asS 1
at = Q(I‘ XV)

We therefore obtain the relation between areal velocity and angu
momentum

(15) rxp=2m%-

(3) Kinematics in Space

We decompose vectors along the three directions s (tangent), n (prmc1p
normal) and & (binormal) of the three-dimensional trajectory to obtain th
following components:

=(2,0,0),

. . 3
V= (’U, B ,0)

p 1s the radius of curvature introduced in (9) or (10), now constructed s
as to lie in the osculating plane of the trajectory.

If we pass to the moments of velocity and acceleration, we kee
the definitions rXv and rx v, but note that Fig. 5 must now be though#
of as three-dimensional. In addition to magnitude and sense of rotatio
the parallelogram drawn there also has position in space. Because it i
helpful in visualizing this point it has become customary to indicate th
position by a normal to the plane of the parallelogram. By conventio
that side of the normal is chosen which points in the direction of advane
of a right-handed screw rotated in the sense of rotation of the moment%
(from r to v or Vv through an angle less than 7). The vector picture of 1'%1‘{
moment then becomes an arrow pointing along this normal, its lengthy
being equal to the magnitude of the moment. InFig. 5 one should, therefore
think of the moment as directed out of and perpendicular to the plane 0ig
the paper. We shall postpone a thorough investigation of this procedures
and of the difference between axial and polar vectors to Chapter IV, § 23
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qo far we have described the moment about an arbitrarily chosen point
of reference 0. 1In the following subsection we shall explain what is meant
by the moment about a given axis.

(4) Statics in Space; Moment of Force About a Point and About
an AXxis -
The moment of a force F about a reference point O is completely defined

by
(16) L-=rxF,

where r is the radius vector from O to the point of application P of F,

(16a) r=(,¥,2)

if O is taken as origin of coordinates L can be represented as a vector
by the rule just given for moments (rule of the right-hand screw, with
length of vector equal to |L{). We now ask: what are the components
of L along the coordinate axes ¢ We can define them as the projections of
the moment vector on these three axes; for instance,

(17) L,= |L|cos(L,z)
But |L| is the area of the parallelogram having sides r and F. The right

- member of (17) is therefore at the same time the projection of the area
of the parallelogram on the z-y-plane. The latter has sides
Tproi= (%, ¥); Fpry= (X, Y),

proj proj

s0 that, with the help of (17), we obtain as in (12a)
(17a) . L=xY—yX,

and similarly

(17b) L, =yZ—zY, Lysz—xZ.

The components L,, L,, L, of L can be called the moments of the force F
ahout axes «, y, z. Cf. problem 1.10.

'What has been said of the coordinate axes also applies to any arbitrary
aXis 4. The moment of a force F about an axis @ is defined, just as in
(17), by taking the moment about a point O located on a and projecting the
COTI:GSponding moment vector on a. Or it can be formed as in (17a, b) by
Projecting the area of the moment about O on a plane perpendicular to a.

third method consists in finding the shortest distance from the point of
application of the force to @, which we shall call the lever arm I. In this
Case F is decomposed into three components, F, parallel to a, F; in the
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direction of I, and F, in a direction perpendicular to both « and L. 'n
then have

(18) Ly(F)=L(F)+ L,(F)+L,(F,).

The first two terms on the right must vanish; for there can arise no momg .ﬁ?:-f_
of force about an axis a if the force is either parallel to a or if it intersects ,4

There remains the third term which results from a force perpendicujn
to @ acting with a lever arm I. Instead of (18) we have, therefore, 3

(18a) L,(F)=L,(F,)=F, -1

n

At this point it may be well to say a few words about the diﬁ‘eren;
notations for the products of two vectors. The following list shows th&;
unfortunately these notations vary widely, both in historical and nationall
usage.

I;?:,?&ftf This book SG‘E)B;{TB?E;FESI') GiBBs | HEAVISIDE |ITALIANS GRASSMANN B
Scalar or r
inner..| A* B (% B) WB AB AXB AL B
Vect:
outer..| AXB | [AB] [AXB | VAB | AAB | ABor juB

Some explanatory remarks follow., The great thermodynamicist Willar
Gibbs made a short summary of vector analysis, then still little knowngl
for the use of his students. His notation is still followed (with slight§
variations) by many American and British authors. Heaviside’s notatio
for the vector product, in which ¥V stands for vector, was thereupon generall
abandoned. The Italian notation originated with Marcolongo. Hermann]
Grassmann, in his “ Ausdehnungslehre  (Extension Analysis, 1844 andg
1862), had developed a logical system of calculation with segments andy
points. According to him the simplest relation between two directed
segments @ and b, is the “ planar magnitude ” (Plangrosse), i.e., the parallelo
gram formed by @ and b, which he therefore denotes by ab (though occasion
ally also by [ab] ). The vertical line in Grassmann’s notation for the vector 1
product means “ complement >’ (Erganzung), that is, denotes passing t0
the vector arrow perpendicular to the planar magnitude. ' ;

§ 6. Dynamics (Kinetics) of the Freely Moving Mass_§
Point ; Kepler Problem ; Concept of Potential Energy
(1) Kepler Problem with Fixed Sun

The simplest example we can think of in connection with a freely J’;
moving mass point is, at the same time, the most important for our picture g
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of the universe, namely, the motion of the planets. It is a two-dimensional

roblem, and motion takes place in the ecliptic if the planet in question
;s the earth. We assume the sun to be fixed in position and justify this
py its large relative mass,

Sun 330000, Jupiter 320, Farth 1, Moon L.

We shall deal with the problem including the sun’s motion in Part 2 of this
cection. Let M be the mass of the sun, m that of the planet. The Newtonian
attraction is

[F|=G ”:1:4 ; (@ = gravitational constant,
or, vectorially,
mM r
(1) F=—-@G F ; .

It passes through the fixed point O at the center of the sun, which serves as
origin for the radius vector r.
Tt follows that r X F=0 and therefore, by the Second Law,

rXp=~0 and in view of (5.14), r X p=const.

The angular momentum about the sun is constant, therefore also the areal
velocity of Eq. (5.15) is constant. This is the second Kepler law:

The radius vector from the sun to the planet sweeps over equal areas in
equal times.

Let the constant areal velocity multiplied by two be called the * areal
velocity constant ” C,

dsS
(2) 2= =C.

Fie. 6. Polar coordinates for the Kepler problem with sun as origin; area swept out

by the radius vector.

We now introduce the polar angle ¢, the true anomaly!? of the astronomers
(ef. ‘Fig. 6), and obtain

a8 _

1
dS=gr2dg, 2%

ﬂ%zC

L .
True anomaly is here defined as the angular distance of a planet from its aphelion,
as seen from the sun.—TRANSLATOR.




tl

40 Mechanics of a Particle
so that

S . O

(3) =5

In order to derive the first Kepler law, the equation of the trajecto
we decompose the forces along Cartesian coordinates. After division
m the equation of motion becomes

dx aM

s TcosqS
(4) i

y, b .

(_ﬂ bm(,b

If we multiply both sides of both equations by ;} and recall (3), we obta,'f

da2 GM
d—q"s =TT COSs q’)
dy aM . 'A
(w = - T Sin qS

These can now be integrated. Let 4 and B be constants of integratio
The result is

a'::——@sin ¢+ A4

5
@) Y= %coqu—l—B

This means that the hodograph of planetary motion is a circle,

(52) @—AP+G—B7= ()"

We shall return to this point in problem 1.11. Let us transform the le
members of (5) into polar coordinates,

x=r cos ¢, y—rsindg,
so that

T=7 cos $—7¢ sin = — %%in 1A

y=7 sin ¢-+r ¢ cos g= %ﬁr—cos é+B.

-

We now eliminate # by multiplication of the first equation by —sin ¢, b
second by cos ¢, and subsequent addition. We obtain

rgﬂz%M#A sin ¢+ B cos ¢
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or, rec&]ling (3):
(6) lz%if*% Sin93+gCOSq5.
This is the equation of a conic section in polar coordinates whose origin
coincides with one of the foci of the conic section. We therefore obtain the
frst Kepler law: The planet describes an ellipse with the sun at one focus.
In this connection we note that two equally possible trajectories, the
hyperbola and the parabola, evidently do not apply to the planets, but
only to comets. We shall not discuss them here, but refer the reader
to problem I.12.

The derivation of the first Kepler law given here differs from that
offered in most texts. The latter starts out with the equation of energy,

which we shall now derive. We turn back to Eq. (4), where we replace
cos ¢ by ?, sin ¢ by % in the right members. We then multiply the first
of Egs. (4) by &, the second by g, add the two, and get’

. . 1M d GM d
@+ P =—3 = g@+¥)=— —;,?;g;

|

2
bl =

¢

An integration with respect to ¢ yields

(#+5%) = 7+ E.

bO) b

(7)

- The left member is the kinetic energy divided by m; the first term on the
right is, apart from sign, the potential energy divided by m (cf. Part 3 of
this section); E is therefore the total energy divided by m. Our Eq. (7)
has the same form as the equation of energy of one-dimensional motion,
(3.8).

In order to pass from (7) to the equation of the path (6) in the simplest

possible manner, we recall that in polar coordinates the square of the
element of line is

dx? - dy? = dr? 4 r2dg2.
We therefore have

i (8 +#(0f(H{(8
O, in view of (3),
| o (wip) 5 )
fwe put s=2, this becomes

o[ +2}
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so that our equation of energy (7) is transformed into
1 ds \2 " .
EOZ{(%) —I—S }MGMS—E
Differentiation with respect to ¢ gives

d¢{c ¢2+s GM}:O.

Since % # 0, the bracket must vanish. Thus we obtain a linear homogeneoqu’-
differential equation with constant coefficients of second order in s,

_ o,
d¢2 2t =

The general solution of such an equation consists of a particular solutxon

of the inhomogeneous equation plus the general solution of the homogeneo ‘3
equation. Evidently

GM

§ = constant = T

is a particular integral of the inhomogeneous equation. The general
solution of the homogeneous equation is the sum of sin ¢ and cos ¢. Weg

o

can now take 4/C and B/C as our constants of integration and finally obta,m,ﬁ

_aM A . -
= 7T —oSin ¢+ Ccos b, o

which is precisely the previously obtained Eq. (6).

i e e L UM, i s s i g e At e et 2t

Fie. 7. Kepler ellipse with major and minor axes; perihelion, aphelion, eccentricity.

We shall now specialize this equation in such a way that the line ¢=0 i
which starts out from one focus, passes through the other focus as well, :
1.e., that it forms, together with the line ¢=4, the major axis of the elllpse
(cf Fig. 7). On this axis are located the points P, * perihelion ” (closest
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to the sun) and A, “aphelion "’ (farthest from the sun), at which r must

pe a minimum and a maximum respectively. We therefore impose the

d 0
d_;b:O forqsz{;r

which, from (6), requires 4=0.
If, in addition, € is the eccentricity of the ellipse, Fig. 7 shows that at

perihelion, r=8P=a (1—e), ¢=m,
aphelion, r=8A4=a (1+4¢), $=0.
According to {6) we then have at

perlhehon, &:(1—__ = 6,’

aphelion,

From these we obtain by addition and subtraction

(8 GM 1 , B €
) C*  a(l—¢6Y 0= Tal—&)

~ respectively.
We shall finally express the areal velocity constant C' in terms of the
period 7. From (2) we immediately obtain

0= with §=mab=ma*(l—e)'

as the total area swept out by the radius vector. It follows that

dna*(l —e?)

() 2 ="

If we introduce this in the first of Eqgs. (8), we have

SinCeG- and M are the same for all planetary trajectories, (10) is the
€Xpression of the third Kepler law: the squares of the periodic times
@re proportional to the cubes of the major axes.

. Kepler greeted the discovery of this law with the enthusiastic statement?8:
Finally T have brought to light and verified beyond all my hopes and

13 ) -
Harmonice mundi, 1619. The two first Kepler laws had been published in the
Astronomia Nova, 1609,
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expectations that the whole Nature of Harmonies permeates to the fullest 2
extent, and in all its details, the motion of the heavenly bodies; not, it is f :
true, in the manner in which I had earlier thought, but in a totally different, | _
altogether complete way.” : '

Actually the third Kepler law in the form (10) is not yet quite %
exact. It is valid only as long as one can neglect the planetary mass m '{
in comparison with the mass M of the sun. We shall now drop this assump- §
tion, thereby passing to the two-body problem proper of astronomy. This
problem is not significantly more difficult than the one-body problem
treated so far. 5

(2) Kepler Problem Including Motion of the Sun

Let x;, y; be the coordinates of the sun S; =z,, ¥, those of the planet P.
According to Newton’s third law the force on § must be equal and
opposite to that on P, so that the complete equations of motion are

for the sun, for the planet,
d¥z, mMQ@ dir mMG .
M =" cos ¢; Mg = 0S¢,
d*y, mMG . ) d2y mMG
M =5 = —5—sin ¢; Mg = — "z SN @,

We now introduce the relative position coordinates

(11a) Log— 1=, Yo— 1Y,

and furthermore the center of mass coordinates
mxz—l—Mxlu_ mys+ My,
(11b) gy A =, s -

¥4
Y
M“zl’/'!@
W = Ly 4y
Pl -

Fia. 8. XKepler problem with motion of sun taken into account.

Subtraction of the equations of motion gives

d3x (M 4-m)@
A= a8,

Py (M +m@
at —

(12)
sin ¢;
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whereas addition yields
d* d?
(13) Tt —o0, 1 _.
Comparison of (12) with the earlier Eqs. (4) shows at once that the
first two laws of Kepler remain intact, i.e., are valid for the relagive motion
as well. The third law takes the form

T: 47
(14) B G+ m)

The ratio T2/a® is therefore no longer a universal constant, but in principle
‘s somewhat different for every planet. Because of the preponderance of
the sun’s mass the deviations from (10) are, however, exceedingly slight.

Egs. (13) further show that the mass center of sun and planet moves
with constant velocity. If we do our caleulations in terms of a coordinate
system in which the mass center is fixed at the origin, this velocity must
be put equal to 0; the same applies to the coordinates &, 5 of the center
of mass themselves.

Eqgs. (11b) are simplified accordingly. With their help and that of
Egs. (11a) the coordinates x;, ¥ of the sun and the coordinates ,, ¥, of
the planet can now be expressed separately in terms of the relative position
coordinates x, ¥:

m
£, y1=—M+m(x, y)’

M
Xy Yo~ Y-

Tt follows that in the center of mass system the trajectories of the sun and
planet are also ellipses; that of the planet is almost identical to the ellipse
considered in Part 1 of this section. That of the sun is a very dwarfed
ellipse, traversed in the same sense, but = out of phase with the planet’s
trajectory.

If we change the law of gravitation to

(15) F=Fkm- ;, n arbitrary,

the second Kepler law will hold unchanged; the trajectories, however,
become transcendental curves which are, in general, not closed. It is
only in the case n=1 that we obtain ellipses just as in the case of gravitation,
n=—2. (Cf. problem I.13).

(3) When Does a Force Field Have a Potential?

In one-dimensional motion we were able to define a potential energy
V connected with a force X without any difficulty—see Eq. (3.7). As
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mentioned at that time, this is possible for two- or three-dimensional i5j
motions only if certain conditions are met. If X, Y, Z are the Cartesian
components of the force F the definition of potential energy for the three-
dimensional case analogous to (3.7) would be 1

Tz

(16) Vﬂ—f (X dz+ Y dy -+ Z d2).

If ¥ is to be a quantity independent of the path of integration and dependent .

only on its endpoint (the choice of the initial point merely gives rise to an
additive constant which remains arbitrary in any case), the expression

Xdx+Y dy+Z dz

must be a perfect differential; ie., X, Y, Z must be the derivatives with :
respect to z, ¥, z of a “field function.” In our case the function is just "
—V, and we say that F is ¢ derivable from the potential ¥.” The well-
known conditions for this are that

7 0¥ _ox oz_o¥ oX_oz,
) éx oy oy Oz 9z~ ox

It is only if these conditions are fulfilled that a field function V(z, y, 2) can
be defined for each point z, y, z; V is called the potential energy or simply .
the potential.

In the two-dimensional case, where Z=0 and X, Y are independent
of z, the three Eqgs. (17) are reduced to the first one of these.

Vector analysis (which has been relegated to Vol. IT of this series since we
need only vector algebra in this volume) shows that the conditions (17)
have an invariant meaning, i.e. are independent of the choice of coordinates.
In Vol. II these conditions will be summarized in the vector equation, curl
F =0 (this is often expressed by saying that the vector field F is irrotational).

Evidently one can without difficulty write down expressions for X, Y,
Z in terms of z, y, z which do not satisfy conditions (17). On the other
hand we see that these conditions are satisfied for the gravitational field

X=Y=0,Z=—mg
and lead to
(18) V=mgz.

The same is true of the general gravitational fields based on Newton’s
law and the mathematically similar fields of electrostatics and magnetostatics.
As a matter of fact fields that are irrotational and simultaneously time- §
independent (‘‘ potential fields ) occupy a unique position in nature.
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CHAPTER 1II

MECHANICS OF SYSTEMS, PRINCIPLE OF
VIRTUAL WORK, AND D’ALEMBERT’S PRINCIPLE

§ 7. Degrees of Freedom and Virtual Displacements_{?
of a Mechanical System ; Holonomic and
Non-holonomic Constraints

The single mass point has one degree of freedom if its motion is restricted 3
to a straight line or a curve, two degrees of freedom if it is made to move j
in a plane or on a curved surface; the mass point moving freely in space @
has three degrees of freedom.

Two mass points connected by a weightless, rigid rod have five degrees
of freedom; for the first point can be regarded as freely moving, in which 3
case the second is restricted to the surface of a sphere described about
the first, its radius equal to the length of the rod. -

The number of degrees of freedom for » mass points which are coupled
by r relations between their coordinates is

(1) f=3n—r.

If there is an infinity of mass points connected by infinitely many conditions
such an enumeration is of course not feasible. The procedure to be used
in that case will now be shown, the rigid body serving as example. ‘

(a) Freely Moving Rigid Body -

We single out a point of the rigid body. It has three degrees of freedom.
A second point, at a constant distance from the first (definition of “rigid 1), 1
can move only on a spherical surface about the first point as center. This
gives two more degrees of freedom. Finally a third point can describe &
circle about the axis connecting the first two points, thus contributing
one more degree of freedom. Once the motions of these three points have
been specified, the paths of all other points of the rigid body are uniquely
determined. It follows that

f=3+241-:6.
() Top on a Plane Surface

-

We assume that the bottom of the spinning top terminates in a point,
and take this as the first point of our enumeration; it has two degrees of 4
48
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freedom. A second point can move on a hemisphere about the first, and
a third one on a circle about a line connecting the first two. Thus

f=2+424-1=5.
(c) Top with Fixed Point
Now the two degrees of freedom of the first point are lost, so that

f=2+41=3.
(d) Rigid Body with Fized Axis—Pendulum

Here
f=1

If the center of mass of the body does not lie on the axis we speak of a
physical or compound pendulum. From this we obtain a. mathematical
or simple pendulum if the body shrinks to a point. The spherical pendulum
— a mass point restricted in its motion to the surface of a sphere — has

f=2.
(e) Infinitely Many Degrees of Freedom
For a deformable solid body or a liquid

f=w.

- In that case the equations of motion become partial differential equations.
By contrast a system with a finite number of degrees of freedom = is deter-
mined by an equal number n of ordinary differential equations of second
order,

(f) Machine with One Degree of Freedom

Such a machine consists of a series of nearly rigid bodies coupled to each
other either by links or by means of guides of various types. The classical
example of such a machine is the drive mechanism of a piston engine
(Fig. 9). If the machine is provided with a centrifugal governor (also
called Watt governor because it was first proposed by the inventor of
the steam engine), it acquires a second degree of freedom.

In the aforementioned examples the number of degrees of freedom
€quals the number of independent coordinates which are necessary to
d‘etermine the position of the system. The coordinates need not be Carte-
San.’ In case of the drive mechanism we can equally well specify either
the coordinate z determining the position of the piston or the angle ¢ giving
the position of the crank pin on the shaft. In general we shall call the
ndependent coordinates of a system of f degrees of freedom

2) > Go - - - Gpe




50 Mechanics of Systems I1.7

They can, within certain limits, be chosen arbitrarily. The 7 conditions
among the coordinates referred to in Eq. (1) can be satisfied identically 4
by suitable choice of the ¢, so that they drop out of the subsequent treatment,
of our system.

The mechanics of Hertz mentioned on p. 5 has the important merit
of having called attention to conditions of differential form, to which the
foregoing cannot be applied. Such a condition can be written as i

t
(3) SFy(g: - - - Gy)dgy=0.
k=1
Here we assume that the F,-do not all have the form ggﬁ, so that (3) is not ‘-:‘
the total differential of some function @ (g, . . . ¢,), and we assume, more-
over, that it cannot be converted into a total differential by means of an
integrating factor.
In agreement with Hertz we shall call conditions of the form ®(g, . ..¢,) 3
—const. holonomic (holos in Greek =integer in Latin=-whole=integrable);
conditions of the form (3) which cannot formally be integrated will be

called non-holonomic! The simplest example of a non-holonomic condi- §

tion is furnished by a sharp-edged wheel rolling on a horizontal plane, §
cf. problem II.1 (the sleigh and the flexible coupling mechanism of a bicycle 3
also belong in this category). Such a wheelis restricted to move always in
the direction it may have at any given instant. Nevertheless it is able _
to reach all points of its supporting plane, even if at times only by pivoting

about its sharp point of contact. It therefore possesses more degrees of

freedom in finite than in infinitesimal motion. In general, if a system :;
subject to r non-holonomic conditions has f degrees of freedom in finite motion, 3%
it has only f—r degrees of freedom in infinitesimal motion. This point will *
be investigated in problem 1L.1.

The foregoing distinction is important for the concept of virtual dis-
placements. A wirtual displacement is an arbitrary, instantaneous, infini-
tesimal change of the position of the system compatible with the conditions
of constraint. Whereas we shall denote real displacements due to given
forces under given conditions by

dgy, dgs - - - dgy,
the symbols

3¢y, 8q, . . . 8¢y |
will be used to denote virtual displacements. The 8¢ have nothing to do

1 A. Voss made a general study of sueh conditions in 1884, long before Hertz; cf.
Math. Ann. 25.
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with the actual motion. They are introduced, so to speak, as test quantities,
whose function it is to make the system reveal something about its internal
connections and about the forces acting on it.

For purely holonomic constraints the 8q are independent of each other,
one 8g corresponding to each degree of freedom. A larger number of 3¢
must be introduced for non-holonomic constraints ; in that case the 8¢
are related by differential conditions of the form (3), or, for virtual dis-
placements,

f
(4) Z Filq, .. -Qf)SQkZO-
k=1

Here f is the number of degrees of freedom for finite motion., As previously
emphasized, this number is greater than that for infinitesimal motion.

§ 8. The Principle of Virtual Work

Let us consider a mechanical system in equilibrium under applied forces.
The forces may have any desired direction, may act on various parts of the
system, and need not have the positions required for the equilibrium of a
simple rigid body. Whether the forces lead to the equilibrium of the system
under investigation depends as much on the system as on the forces.

Fra, 9. Schematic diagram of the drive mechanism of a piston engine,

In the spirit of elementary particle mechanics we would ask for the
reactions which are exerted by one part of the system on another due to
the applied forces. This procedure would, for instance, be used by a
mechanical engineer in the analysis of the crank mechanism (Fig. 9). The
steam pressure P acting on the piston is transmitted by the piston rod to
the crosshead K, whence it is passed on as longitudinal compression to the
connecting rod of length I. The connecting rod acts on the crank pin Z
with a thrust which has the direction of the rod. In order that the system
be in equilibrium only that part U of the thrust which is perpendicular
to the crank, therefore tangential to the crank circle, need be opposed by
an equal applied force. The component in the direction of the crank,
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i.e., toward the center of the crank shaft, is absorbed by the rigidly fixed §
shaft bearing, O. It only puts a stress on the bearing and is irrelevant
to the question of the equilibrium of the system., 1

It is therefore the reactions within the system which make equilibrium ‘
possible. To investigate them individually is possible in simple cases,
but tedious in general. We can, however, assert without knowing them
in detail that they do mo work on the system. In our case the guide pressure %
at the guide rails is perpendicular to the motion of the crosshead, and that §
part of the force acting on the crank pin which is transmitted to the crank
shaft acts through the fixed point O of the crank shaft bearing. We
establish this assertion in the general case by giving the system a tentative §
virtual displacement from its position of equilibrium. The * virtual work ” #§
of the reactions in such a displacement is found to be zero.

Let us verify the principle in detail on the simple rigid body. We
must imagine that every point ¢ is related to every point k of the body by
means of reactions R,; and R, acting on ¢ and k respectively. If we
single out two such points, we have the system of two mass points mentioned
at the beginning of § 7, the two masses being connected by a weightless,
rigid rod. The reactions acting in this rod must satisfy Newton’s third law, 8

(1) Ryp=—Ry;.

Just as in § 7, in the enumeration of the degrees of freedom, we shall now
decompose the virtual displacement into a translation 8s; common to both 1
points and a rotation 8s,, of point & about the already displaced point s,
this rotation being a motion normal to the rod. Then

For the virtual work of translation we therefore obtéih, in view of (1),
SWtr=Rik ‘ SS,:—I—R‘M' 881;=0;

for that of rotation, for which ¢ remains fixed and k is displaced normal "
to the rod,

SWrot = R’ik ' SSnEO.

This example illustrates that Newton’s law of action and reaction is the 4
salient point in the transition from particle mechanics to the mechanics
of systems.

We shall now expand what we have learned with the help of the fore-
going examples into a general postulate: n any mechanical system the
virtual work of the reactions equals zero. TFar be it from us to want to give _1_
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a general proof of this postulate.? Rather we regard it practically as
definition of a * mechanical system.”

It is now only a small step to the general formulation of the principle
of virtual work. We argue as follows: every physically given force acting ona
system in equilibrium is in equilibrium with the reactions induced at its
point of application; the work done by such an applied force plus that done
py its reactions in any virtual displacement of the point of application is
therefore zero. The same is true of the sum of all applied forces and the
sum of all the reactions induced by them. Now the reactions, taken by
themselves, do no virtual work (by the previous paragraph). Therefore
the virtual work done by the applied forces keeping a system in equilibrium
must equal zero as well.  The tedious investigation of the reactions is thereby
eliminated.

This is the principle of virtual work, often called Prinzip der virtuellen
Verriickungen oder Verschiebungen (principle of virtual displacements) in
the German literature. This name is not as fortunate as the one used in
English-speaking countries, which was taken over from the Italian principio
dei lavors virtuali. The term, principle of virtual velocities, which is often
used in the mathematical literature and was first proposed by Jean Bernoulli,
seems unsuited to us.

Historically the principle was already sketched by Galileo. It was
further developed by Stevin, Jacques and Jean Bernoulli and d’Alembert.
. It achieved its dominating position as the most general equilibrium principle
only with the ‘ Mécanique analytique ” of Lagrange.

Whether the constraints of the system are of the holonomic or the
non-holonomic variety affects the application of the principle of virtual
work but little. Indeed, a condition of the form (7.4) can be introduced
in the expression for the virtual work by elimination of one of the 3¢, regard-
less of whether this condition is integrable or not.

Instead of forces of reaction we can use the more descriptive term,
forces of geometric origin. For they are given by the geometric relations
between the various parts of the system, or, as in the case of the rigid body,
between its individual mass points.

Antonymous to forces of geometric origin are the ‘‘ forces of physical
origin > or applied forces. The commonly used term “external forces”
is less clear and will not be used here in this sense. Applied forces are
caused by physical effects, such as gravity, steam pressure, cable tensions
acting on the system from the outside, etc. They betray their physical
origin by the fact that their mathematical expressions contain specific

? Lagrange attempts this in the int.rociuction of his Mécanigue Analytique (cf. p. 1)
by means of certain block and tackle constructions,
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constants (gravitational constant, readings of the scale of a manometer or
barometer, etc.) which can be determined only experimentally. In § 14 §
we shall talk about the force of friction, which must sometimes be counted 7
among the forces of reaction, sometimes among the applied forces. It is a 3
force of reaction if it occurs as static friction; an applied force if it occurs
as sliding or kinetic friction. Static friction is automatically eliminated __
by the principle of virtual work; kinetic friction must be introduced as an A

applied force. An external indication of this is the occurrence of the

experimental constant u in the law of sliding friction (14.4).

§ 9. Illustrations of the Principle of Virtual Work
(1) The Lever (Archimedes)

The lever possesses one degree of freedom, f=1, therefore only one
displacement 8¢ which corresponds to the virtual angular displacement 5¢. S
Equilibrium exists if, and only if, the virtual work done in a rotation S

8¢ of the lever is zero. Let 8s,, 8sp be the virtual displacements of the ¥
points of application P and @ of the forces 4 and B respectively. We then 3

demand that
A8sy+Bdsg=0.

But from Fig. 10a 8sy=a 8¢, 8sp—=—b 8. Therefore
(Aa—Bb) 6¢ =0

and consequently
Aa=Bb.

The moments of the forces about the fulerum O are equal, i.e., their

algebraic sum is zero.

J: S5
e P_a 0 % 3208
oS { ) Q
8 a
A Y58
AN Y4,
F1a. 10a, Lever with arms « and & under Fic. 10b. Lever under oblique load,
vertical loads 4 and B. showing the reaction of the fulcrum

on the beam.

pi.
i
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If, as in Fig. 10b, the force A is not perpendicular to the lever arm,
we can decompose it into a component A, in the direction of the arm,
and A, perpendicular to it. With point O fixed, 4, has no effect, so that
we have

A2a= ]Blb.

In order to obtain the load at O, we must introduce an opposing force
acting on the arm; in Fig. 10a it is directed vertically upward and has
magnitude Q=4+ B; the load on the fulerum is equal and opposite to this
force Q. In the case of Fig. 10b we have the vector equation Q=A+B;
here, too, the force on O is the opposite (i.e., “ equilibrant ) of Q. In
posing these questions, we actually transgress the limits of the principle
of virtual work. The fixed position of the pivot O is characteristic of the
mechanical system of the lever. Its virtual displacement, and the virtual
work done on it, are therefore zero. In order to obtain @ or Q by means
of our principle we should have to consider an altogether different mechanical
system: we should have to provide O with two degrees of freedom and ask
for the condition of equilibrium when we add a virtual translation of the
whole lever parallel to itself to the rotation so far considered.

(2) Inverse of the Lever: Cyclist, Bridge

Consider the bicycle of Fig. 11a. The earth opposes the weight in the
“two points R (rear wheel) and F (front wheel). The rear wheel is exposed
to the greater pressure, since the weight @ of bicycle and rider lies closer
to R than to F. Accordingly a cyclist pumps his rear wheel to a higher

Q
R F
WWWI
2 —
a [/ 5l b
A
Y

Fic. 11a. Distribution of weight on Fic. 11b. Distribution of load on
front and rear wheels of a bicycle with the two supports of & schematic

‘ rider, bridge.

pressure than his front wheel. The load on the rear wheel is A:fiﬁ Q,

that on the front wheel, B—=-%_ Q.
a-+b

The same situation obtains with a bridge loaded off center (Fig. 11b).
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{3) The Block and Tackle (also known to the Greeks)

Let n be the number of pulleys at both the upper and the lower end of
the tackle. ¢ is the load to be lifted, P the force required at the loose end
of the rope. In a virtual displacement of the system let

P move a distance ép,

¢ move a distance dq,

the positive direction of motion being indicated by the arrows of Fig. 12.
Equilibrium exists if

1) P $p—Q 8q=0.

If now @ is lifted an amount 3g, the 2n rope lengths between the upper -
and lower pulleys are shortened by 8¢ each, the total shortening therefore &
being 2ndg. The loosely hanging rope at P must lengthen by precisely the
same amount. Thus

!
1

Sp=2ndq
and, in view of (1),
(@ —2n P)dg=0.

We then obtain

(2) p=2. | 4

L

We have here treated the block and tackle
as an ‘‘ideal ” mechanical system, i.e., we
have neglected the friction between ropes ‘
and pulleys and the friction in the pulley \'
bearings. R E

This simple example can of course also o
be treated by the elementary method of rope : é
tension, which in this case affords perhaps a Jpl Q
more concrete picture of the interplay of
forces. pY

Let § be the tension in the rope, taken

: : Fia. 12. Block and tackle.

over its total cross-section. If we neglect Virtual displacements of load
all frictional effects, the tension must be the and force.
same at every point of the rope; no matter
where the rope is cut, one encounters the same tension S, which in
both severed ends acts away from the point of severance. Let us cubt |
the rope once on the left side, above P. The severed piece, in which P
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acts downward and S upward, gives
P=8.

Next we cut all the ropes in the right part of the figure, thereby exposing
9y cross-sections on each side of the cut. The equilibrium of the forces
acting on the severed lower right part demands

@=2nS.
We therefore have again
Q,
P= ’2-1—%

In addition, a consideration of the upper part of the system yields the loading
of the beam from which the block is suspended. Evidently it amounts to

P+Q.

(4) The Drive Mechanism of a Piston Engine

As in Fig. 9, P is the total force due to the steam pressure exerted on the
piston, so that the virtual work done on the piston is Péx. Let @ be the
equilibrant of the peripheral force U on the crank, i.e., the force causing
P to be in equilibrium. The virtual work done by ¢ is @ r8¢. Our
principle requires

) Qrip=Psr, Q=P

The calculation of @ therefore reduces to the purely kinematic task
of determining the relation between 8z and 3¢.
According to Fig. 9 (projection on the z-direction),

(4) r cos ¢-+-1 cos Y= const—u,

so that, differentiating,

(4a) r sin ¢ d¢—+1 sin o =Sz,

The triangle OZK gives

(4b) sin =7sin g, S—joCop—] ——5F 54
i o]

i

If we introduce this in (4a), we obtain

(4¢) rsin¢a¢(1+§ cos ¢ )sz.

i
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This relation furnishes the kinematic quantityrs—(;-. Substitution in (3) #

now gives

5) Q=P sin ¢(1 +}[1__ (‘;,‘)’ifmw]i)'

l

Thus the peripheral force U= @ transmitted by the crank pin Z is determined
for every crank position ¢. Its precise knowledge is essential for an evalua-
tion of the amount of cyclic fluctuation of the machine, and hence for the
determination of the flywheel required. Since r/l is a small proper fraction, §
(5) can be expanded into a rapidly converging series in r/l. ~ Cf. also problem
11.2.
Finally, for the sake of a later application we shall calculate the piston
position z as a power series in rfl. According to (4) and (4b} we have

(6) x—i—r(cos qS—%{sinzcﬁ—l—. . .)=c0nst.

(5) Moment of a Force About an Axis and Work in a Virtual Rotation
Let a point P be at a distance ! from an axis a. Let a force F of arbitrary E
direction act at P. In a virtual rotation 8¢ about the axis a, P is displaced by ':;

What is the work 8W done by F in this displacement ?
We decompose F into the mutually perpendicular components ¥, Fy,
F,, just as for Eq. (5.18). The work done depends only on ¥, for

SW=F, dsp=F,15p.

A comparison with (5.18a) will allow us to make a general statement:

The moment of a force about an axis can be regarded as the virtual work
of the force in a rotation 8¢ of its point of application about the awis, divided
by 64,

(7 L,(F)= %%V ~IF,.

The concept of moment, basic to statics, is thereby brought into relation 3 '_
with the concept of virtual work basic to all questions of equilibrium. E
Let us remark in this connection that the dimensions of moment (force:
lever arm) are the same as those of work (force - distance). This is in agree- g
ment with (7) if, as is customary, we regard the angle measured in radians S
as dimensionless. ]
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§ 10. D’Alembert’s Principle ; Introduction of
Inertial Forces
As we have seen, all bodies have the tendency to remain in a state of
rest or of uniform rectilinear motion. We can think of this tendency as a
resistance to changes in the motion, an inertial resistance, or, for brevity,
as an inertial force. The definition of inertial force F* for the single mass
point is therefore

(1) F*

—p
and the fundamental law p=F takes on the form
(2) F*+F=0.

The tnertial force is in vectorial equilibrium with the applied force.

While F is a force given by the physical situation, F* is a fictitious
force. We introduce it in order to reduce problems of motion to problems
involving equilibrium, a procedure that is often convenient.

Inertial forces are familiar to us from everyday life. When we set the
heavy revolving door of an hotel in motion, it is not the force of gravity
or friction, but the inertia of the door that has to be overcome. A similar
example is that of the sliding doors of street cars and trolleys.® On the
forward platform the door opens in the direction of travel. When the car
brakes, the door tends to move forward and can therefore be opened easily.
" When the car accelerates after a stop, the open door seeks to retain its
position of rest; it therefore tends to move to the rear and can be closed
without effort. It is easier to get on and off at the front platform than
at the rear, where the door opens in the reverse manner.

The best-known form of an inertial force is the cenirifugal force, which
is noticeable in any curved motion. It, too, is a fictitious force. It
corresponds to the acceleration ¢, normal to the curve, which is a centripetal
acceleration, i.e., directed toward the center of curvature. According to
(6.9) the centrifugal force is given by

(3) C=—m¥,, |Cl=m|—¥,|=m"

where the minus sign refers to the outward direction.
The Coriolis force (cf. § 28) and the various gyroscopic effects (cf. § 27)
also come under the heading of inertial forces. ‘
Incidentally the operation of railroads furnishes a very vivid example
of the fact that the “ fictitious » centrifugal force has a very real existence.

? The translator does not guarantee that the following is applicable to trolleys in the
United States. It applies at least in part to the streetcars of San Francisco, which
belong, however, to a breed rapidly approaching extinction.
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On a curve the rail bed is banked in such a way that the outer rail is higher
than the inner. The difference in height is always such that for some }
mean velocity of the train the resultant of gravity and centrifugal force is
perpendicular to the rail bed. This procedure eliminates not only the
danger of overturning about the outer rail, but also a harmful unequal
loading of the rails.

Strangely enough, the great Heinrich Hertz raises objections to
the introduction of the centrifugal force in the unusually beautiful and
beautifully written introduction to his ‘“ Mechanics ” (Collected Works,
Vol. II1, p. 6):

““ We swing a stone attached to a string in a circle; we thereby con-
sciously exert a force on the stone; this force constantly deviates the
stone from a straight path, and if we alter this force, the mass of the stone
or the length of the string, we discover that indeed the motion of the stone
oceurs at all times in agreement with Newton’s second law. Now the
third law demands a force opposing that which is exerted by our hand on
the stone. If we ask for this force, we obtain the answer familiar to every-
body, that the stone reacts on the hand by virtue of the centrifugal force,
and that this centrifugal force is indeed equal and opposite to the force
exerted by us on the stone. Is this mode of expression admissible 2 Is
that which we now call centrifugal force anything but the inertia of the
stone ¢ "’

We answer this question with a flat no; indeed the centrifugal force,
by virtue of our definition (3), is identical to the inertia of the stone. But
the force opposing that which we exert on the stone, ie., really on the
string, is the pull which the string exerts on our hand. Hertz further remarks
that * we are forced to the conclusion that the classification of the centri-
fugal force as a force is not suitable; its name, just like that of live force,
is to be regarded as a heritage passed down from former times; and from -
the point of view of usefulness the retention of this name is easier to excuse
than to justify.” In regard to this we would like to say that the name
centrifugal force needs no justification, for it rests, like the more general
term, inertial force, on a clear definition. | ‘

Incidentally, it is precisely this alleged lack of clarity of the force concept
which induced Hertz, in an interesting but not very fruitful attempt, to
construct his mechanics entirely without the notion of force (cf. § 1, p. 5).

We now come to the achievement of d’Alembert (mathematician,
philosopher, astronomer, physicist, encyclopedist; ¢ Traité de Dynamique,”
1758).

If a mass point %, part of an arbitrary mechanical system, is acted on b ]
by an applied force F, Eq. (2) must be changed to read S
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(4) F*+F,+ > Ry=0.

Here R;,, is the reaction which the mass point ¢ connected with k exerts
on k. According to our general postulate of p. 52, the Ry, taken together,
do no work in an arbitrary virtual displacement compatible with the (here
internal) constraints. It follows that the virtual work of the sum of all the
F*+F is zero as well,

5) D (B *4-Fy) - 88,=0.
k

Recalling now the principle of virtual work, we can express Eq. (5) by
saying that the inertial forces of a system are in equilibrium with the forces
applied to the system. A knowledge of the reactions is not required.

This is d’Alembert’s principle in its simplest and most natural form.
In order to obtain another interesting formulation of the principle, let us
look at the quantity

Fk_]_Fk* = Fk_f)k

It is that part of the force F, that cannot be converted into motion of the
point k. We can call this part the ‘“lost force” and can therefore re-frame
(5) by stating that the lost forces of a system are in equilibrium.

A formulation of d’Alembert’s principle widely used in textbooks is
‘that expressed in Cartesian coordinates. We call the components of F,,
X,, Y., Z,, and those of 8s,, 8z, 8y,, 8z;,. Furthermore, we stipulate that
the masses m,, involved are constant; for a system consisting of » mass
points we can then replace (5) by

n
(6) Z (X jo—mg) 8+ (X —m i) Sy g+ (Z—my 2g) 82 = 0

It is here required that the 8z, 8y;, 82; be compatible with the constraints
of the system. Let us at once consider the general case of non-holonomic
constraints. There relations of type (7.4) exist; if we replace the

general coordinates g of (7.4) by Cartesian coordinates, these relations
become

n

(6a) pz} [Fu(zy ... 2,)02,+Gu@, ... 2,)8y,u+Hulw, ... 2,)82,]=0.

If f is the number of degrees of freedom for infinitesimal motion, there must
be 3n-—f such relations for the 8z, 3y, 8z (cf. p. 50). In the case of holonomic
constraints the F,, Qu, H, are derivatives of one and the same function
with respect to Ty, Yu» Zpe
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Let the reader be warned emphatically not to look for the true content
of d’Alembert’s principle in the clumsy formulation (6), (6a). Equation (5)
or the statement of equilibrium equivalent to it is not only more readily

useful, but also, by virtue of its invariant form, more natural.

§ 11. Application of d’Alembert’s Principle to the
Simplest Problems

(1) Rotation of a Rigid Body About a Fixed Axis

Here we are dealing with a single degree of freedom, viz., the angle §

of rotation ¢. We let ¢=w be the angular velocity, é =« the angular
acceleration. For the present we are not interested in the axle bearings,

We suppose that arbitrary applied forces F act on the body. According
to § 9, Eq. (7), their virtual work is given by the sum of their moments 3§

about the axis of rotation, i.e., by
(1) OW-=L'8¢=L_ 8¢

where L, is the sum of the moments of the F about the axis of rotation a.
We also wish to know the work done by the inertial forces F*. For this
purpose we subdivide the body into mass elements dm. In view of (10.3) the
inertial force acting on dm directed normal to the path is the centrifugal

2
force dmt;—:dmwv. (In circular motion the radius of curvature p is of

course equal to the distance r from the rotation axis, the velocity » of each
element of mass therefore becomes rw, and its acceleration v along the path
is rw). But the centrifugal force does no work. Along the path direction,
on the other hand, the inertial force is

—dmv=—dmrw.

The total virtual work of the inertial forces is therefore

(2) S(—dmi)s= > —dmrirr = —5pa f rdm=—3pal,
where
(3) I— f 2 dm

is the moment of inertia of the body. The dimensions of I are M L2, thierefore
g cm? in the absolute system, g cm sec? in the gravitational system.
By virtue of (1) and (2) d’Alembert’s principle takes the form

S¢(L,—Iw)=0

i
g

R e .
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so that we obtain the basic equation of rotational motion
(4) Iw=L,

Let us compare this equation with the basic equation of translational
motion of one degree of freedom, say in the z-direction,

mx:Fx.

We see that in rotational motion I takes the place of m.
The same substitution holds in the expression for the kinetic energy.
The kinetic energy of rotation of a rigid body is

dm w? w?
(5) By =T~ [0 = [Frwr=5 [Pdn =51

and therefore corresponds exactly to the elementary expression of particle
mechanics,

(5a) B =T= %fm

In the case of a rigid body with fixed axis, I is time-independent; in
mechanisms with flexible joints and in living beings it is, however, variable
in a characteristic manner. In § 13 we shall see that all athletic activities,
in particular apparatus gymnastics, are based primarily on the ability of
‘the human body to change its moment of inertia.

An investigation of the manner in which the moment of inertia of a
rigid body depends on the position of the axis of rotation will be deferred
to § 22.

Finally we shall turn to the connection of the kinetic energy with the
basic equation of motion. Just as, in the case of constant mass, we can
obtain the equation of motion mZ=F, from the law of kinetic energy in
particle mechanics, i.e.,

dT'  dW

T with dW=F_dx,

we obtain, in the case of constant I, the equation of motion (4) for rotation.
We need merely make use of (5) in

W2V with dW=L,d¢ [Eq. (9.7) ].

i

The moment of inertia occurs also in the expression for the moment of
momentum or angular momentum of the rotating body. If we let M be the
angular momentum of the body, we evidently have

(6) M=devr:w2dmr2= wl,
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(2) Coupling of Rotational and Translational Motion

Think of the coal basket in a mine, or of an elevator. The cable carryin
the elevator is wound around a drum and driven by a force P. Let 7 be
the drum radius. The two virtual displacements that take place (cf,
Fig. 13) are related by

(7) 6z=1r0¢. P

d’Alembert’s principle requires dp

(7Ta) (—Q@—MzZ)oz+4 (rP—1w)dd=0. 1
z

It is convenient to ‘‘reduce’’ the mass of the

drum, so to speak, to the periphery of the drum, i,

i.e., to replace I by a “reduced mass ’’ defined by L

#
(8) I=M_ g %

By virtue of (7), Eq. (7a) can then be rewritten in Fic. 13. Coupling of -

the form translational and rota.
tional motion (elevator,

(P— Q—Mé—Mmd?‘d))SzzO. coal basket).
Since rw=2, rw=-Z, we then obtain the equation of motion
(9) (M+Mred)é:P— Q.

The inertia of the drum therefore adds a term M reg 10 the mass of the
elevator.

(3) Sphere Rolling on Inclined Plane

Here again we are dealing with the coupling of translation (motion
down the incline) and rotation (about an axis through the center of the
sphere perpendicular to the plane of the paper in Fig. 14). The component
of gravity effective in this case is P= Mg sin «; the static friction F indicated
on the diagram does not enter d’Alembert’s principle, since it acts at the
point of contact which is instantaneously at rest. The condition for pure
rolling motion is

(10) Z=rw, or, written for virtual motion, dz=r3&¢.
With d’Alembert we now require that
(11) 82(Mg sin a—Mz)+84(—I1d)=0.

The calculation of I is a problem of integral calculus. We shall state
without proof that the moment of inertia of a homogeneous ellipsoid of
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semi-axes @, b, ¢ about axis ¢ (and correspondingly about a and &) is

M
(12) Ic=€(a2-|—bz).

As a special case we obtain for the moment
of inertia of a sphere

(12&) I=§M?‘2.

. . F1a. 14. Sphere on inclined plane.
Ag in (8) we introduce & mass reduced The static friction F causes pure

to the distance r, which by virtue of (12a) 1 jling, but does not enter d’Alem-
becomes bert’s principle.

(12b) Mmd=f§-M.

If we substitute this in (11) and also take (10) into account, we easily
obtain

(13) 'z':gg sin «.

The factor g shows how the “ fall ”’ on an inclined plane is delayed by the

angular acceleration of the sphere and the increased inertia due to it.
Whereas from (3.13) the final velocity in a free fall was found to be

v=(2gh)t, h=height of fall,
equation (13) now gives the final velocity
b ..
v=(2"3 gh)".

The difference is due to the fact that now the gravitational potential energy
is converted not only into kinetic energy of descent, but also into rotational
energy of the rolling sphere.

(4) Mass Guided Along Prescribed Trajectory

If we assume the guide ways to be frictionless, d’Alembert’s principle
applied to the one degree of freedom here present (displacement along
the guide) simply says that
) Ss(F ¥+ F,}=0,
ie, according to (5.8),

(14) mi,—m|o|=F,

With arbitrary direction of the applied force F. The component F, of F
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normal to the guide, which we may take positive in the centripetal direction,
must then add to the reaction E, (counted positive in the same direction)
to give the equilibrant of the centrifugal force C'; i.e.,

(15) R, +F, = O:m”;.

In general, especially if the guiding action is achieved by a materia]
device such as a rail, we are compelled to take into account also a tangential
component R, of the reaction, the friction. 1f we count the friction positive
in the negative direction of &8s, Eq. (14) is therefore enlarged to

(16) my=F,—R,.

Whereas R, is determined by Eq. (15), R, in (16}, on the other hand, remains
“ statically and dynamically indeterminate ”” and can be determined only
from experiment. In § 14 we shall discuss how such experiments are
carried out.

§ 12. Lagrange’s Equations of the First Kind

Let us consider a system of discrete mass points m,, m,, ... m
nected with each other by r holonomic conditions

(1) F,=0, F,=0,...F =0.

ny CON-

The number of degrees of freedom is then f=3n—r. We operate in Cartesian
coordinates and make use of the formulation (10.6) of d’Alembert’s principle.
In order to write the clumsy sums occurring there in a more convenient
way, we number the coordinates x,, ¥,, 21, . .., Z,, ¥, 2, consecutively as

Xy, Ty, Ty, Ty, « - « Lap—1, Ty

and likewise the components of force X, ¥, Z. The mass belonging to
z;, X, will be denoted by m,; evidently the m, will be equal in groups of
three. Eq. (10.6) now becomes

In
(2) Z (Xp— mkxk oz, =0.

By virtue of the » conditions of constraint (1), the 8x; are subject to the
restrictions

(3) 8F,—0, 1=1,2,...7
which can also be written

3”811"-
(4) Daidn=0,i=1,2,.. 7
k=1
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Let us multiply each of the 8F; by an arbitrary numerical factor A, (Langrange
multiplier) and add it to the d’Alembert equation (2), giving

an

(5) Z (Xk—mkfik—{— Z &%)Sxkz().

k=1 =]

Only f of the 3n displacements z are independent of each other. The
remaining 7 are functions of these independent ones. Let these r displace-
ments be given by the quantities 8x,, 8z,, . . . 8z,. Now we have precisely
r quantities Ay, A, ... A, over which we can dispose freely. We choose

them so as to make

r
(6) Xk—mkﬁt':k-i—ZAiaF'::O; k=1,2,...r.
i=1

bz,

Eq. (5), with the numbers A; now determined, reduces to

3n

. r aFu o
(7) > (Xk—mk:vk+i§1 /\igé)axk_o

k=r+1

where the 8z, are completely independent, there being indeed f=3n—r of
these. If, for example, we choose

- {(8) Sxﬁvaé(); 817,._'_1———8581._]_2: R =3x,.+1,—1=8x;r+v+1;‘ - ﬂax:&nzo’

we see that the factor of 8x,., must vanish. Letting v run through all

values 1, 2, . ..f, we conclude that all expressions in parentheses have to
be =0,

T
Xk—mkii'k—{— ZAigTF;:O; k=r+1,r+2, ... 3n.

=1

Together with the Eqs. (6) these form 3n differential equations
<o

9 ML T = R .

(9) My, Xk—}—;)\laxk, k=1,2,...3n,

which are called the Lagrange equations of the first kind. Of course the my,

are equal in groups of three; thus m,;=m,=m,, since we are dealing with

the same mass point m, having the three coordinates x,=1x,, T,=y,, T;=2,.

So far we have assumed that the conditions (1) are holonomic; we

can easily convince ourselves that all of the preceding can be carried over

to the case of non-holonomic constraints with only slight modification. The
i

only difference is that the factors ?—' in (4) must be replaced by general
X 2 ’
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We divide the forces acting into external and internal forces. This
classification says nothing about the origin of the forces and is therefore
by no means identical with the classification of p. 53 into applied forces
and forces of reaction. Our present distinetion is strictly based on the
criterion of whether the law of action and reaction is or is not satisfieq
within the system itself. In the first case we speak of internal forces,
in the second of external forces. The internal forces of the solar system,
for instance, are applied forces because they are gravitational, whereas
the external force which drives a railroad train forward is a force of reaction
(as we shall see on p. 84), viz., the static friction at the rolling wheels.

We call F,, the external force acting at the point %; the internal forces
will be called Fy;, to remind us that they act between two points contained
in the system and therefore within the system satisfy Newton’s third law,

(1) Equation of Momentum

Let us now make use of d’Alembert’s principle in the form (10.5). We
replace Fy, by F.+ %",'Fik, F.* by —p, in agreement with definition, and

make all the ds;, equal to each other. We therefore impart the same virtual
displacement to all the mass points of the system. The F;, drop out
because of (1) once we sum over ¢ and %, and we are left with

2) 8s - (%Fk—%bk)zo.

Let us indicate the summation over ¥ by means of a bar. From (2) we
conclude that

(3) p-F.

p is the total momentum of the system, equal to the vector sum of the
individual momenta. We define the center of mass velocity V by

MV=mv=p, M=m
and have, in lieu of (3),
(3a) MV =F.

We now choose an arbitrary but fixed point of reference 0. We measure the
distance r,, of the points of the system from O and define the position R
of the center of mass with respect to O by the equation

(3b) MR=mr.




1i.13 Equations of Momentum and of Angular Momentum 71

The content of equations (3a, b) can be summed thus: the center of mass of
a freely moving mechanical system moves like a single mass point, having a
mass M equal to the total mass of the system, and acted on by the resultant
T of all the external forces acting on the system.

(2) Equation of Angular Momentum

Suppose we impart to the system a virtual rotation 8¢ about an arbitrary
axis passing through a point 0. The displacements s, of the various
points m;, of the system are then unequal; for

(4) 88y, = 8PXry,

Fia. 15. The virtual displacement é&s Fig. 16. The moments of internal
resulting from a virtual rotation &¢. forces cancel in pairs.

To prove this, let us look at Fig. 15. &¢ is there drawn as a vector along
the axis of rotation and at the same time as a curved arrow about this axis
m agreement with the rule of the right-handed screw. By virtue of the
definition of the vector product the magnitude 8s; of 8s, is

a5 must be the case for the rotation in question. The direction and sense
of s, are likewise correctly given by (4). 8s, is directed normal to the
plane of the drawing, into the paper.

We introduce (4) in (10.5), while replacing F* and F as in subsec. 1, and
immediately obtain

(5) z{ ot STuy) - 04 Xry =0
Next we use a rule of elementary vector algebra,
(6) A BxC=B-CxA=C-AXB

which says that the parallelopiped formed by any three vectors A, B, C

has a volume which is independent of cyclic permutation of the labels of
its three edges.
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Instead of (5) we can therefore write
(7) 8¢ {2 (X Fy) +> > (1, % Ey)— > (r,Xpy) }=0.
k ik k

In this fashion the connection between 8¢ and r is severed, so that, with
0¢ arbitrary, the factor in brackets { } must itself vanish. In order to write
this factor more simply we introduce the fol]owing notation:

(7a) L,=r,XF, as in (5.12), L sz,
. d . .
(7b) M,=r,Xp,, L Xpg=— (r; Xp) = My, as in (5.14);

L is therefore the vector sum of all moments of the external forces about
the common point of reference O, M is the vector sum of the angular momenta
of all the mass points of the system about the same point of reference, or,
more briefly, the total angular momentum of the system about O.

Moreover we show with the help of Fig. 16 that in the double sum of
Eq. (7) all the terms cancel in pairs, viz., that

We see that in this expression the Third Law, Eq. (1), acts essentially as
the definition of internal force.

From (8) it follows that the double sum in (7) vanishes. Recalling
{7a, b, ¢) we therefore conclude from (7) that

L]

(9) M=L.

This equation is the exact counterpart of Eq. (3). It states that the time
rate of change of the total angular momentum of the system is equal to the
resultant moment of the external forces, just as Eq. (3) stated that the time
rate of change of the total momentum of the system is equal to the resultant
of all the external forces.

These two laws will be called the equations (or principles) of angular
momentum and (linear) momentum respectively.

Formerly it was the custom in the German literature to call basic
equation (9) the principle of areas (Flachensatz). This name had its origin
in the Kepler problem. There we found that in the case of one planet the
areal velocity was proportional to the angular momentum, and the direction
of the angular momentum was normal to the orbital plane of the planet.
This is no longer the case for the planetary many-body problem, where we
have instead

(10) M= 2m, 3k,
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so that not only the different planetary masses oceur as factors, but the
individual areal velocities corresponding to the planets must be added
vectorially. The areal velocity thus arising for a complete planetary
system is defined, as is well known, by the invariable plane (plane normal to

M). It is invariable because in a planetary system external forces are
absent, so that L=0 and, according to (9),

(10a) M = const.

In general for L=0 we obtain the special principle of the conservaiion
of angular momentum. The notion of areal velocity is even more difficult
to visualize, hence less useful, for a system of infinitely many particles
such as a rigid body, so that the term “ Flachensatz *’ should be abandoned
for general use.

(3) Proof Using the Coordinate Method

We shall now sketch the proof of our principles by an alternate method,
that of decomposition into Cartesian coordinates, because the use of these
coordinates is so widespread and has been so greatly favored by older
texts that we wish to defer to usage in some measure.

We begin with the equations

mk:};ﬁc: X mLZ Xix
1

(11) .
My Y= Yk+zyik
i

which are written in easily understandable form. Summation of the first
of these equations over k, with X, = — X,,, at once yields the z-component
of the equation of momentum,

(12) %kaxk: DX,
E %

Multiplication of the first equation by —1;, the second by z,, yields as
their sum

k

We group together in pairs ¢¢ and k: the terms...not written down,

thereby bringing out the direction of the internal forces, i——k and k——>t.
We then obtain

T Vi X2, Y9, X s

F; .
= | r::* [ T Y —Yr) — Yr(—2;) + T Y —Y;) — ¥ Tp—2;) :| .
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Simplification shows this to equal zero, in agreement with Fig. 16. With
the help of (5.17a) the right member of (13) reduces to

ZLkzzwz'
k
The left member of (13) is, in view of (5.14b),

(13a) %zmk(xk?./k"—yké}c):%l&kzzﬂz'
2

Equation (13) is then identical with the z-component of our equation of
angular momentum (9).

(4) Examples

There exists a profound difference between the principles of linear and
of angular momentum which we shall explain with the help of the special
case in which no external forces act on the system.

According to Eq. (3a) in this case the velocity of the mass center remains
constant; for the total mass M occurring as factor is constant, even for
a system with internal motion. If, then, the mass center is initially at rest,
it remains at rest. Inmternal forces are unable to impart motion to the
center of mass, even in a mechanism with flexible joints or in a living body.
In order to move one’s center of mass, one must be able to push against a
support; therefore an external force is necessary.

It is evident that in the absence of external forces L=0, so that (9
yields

(14) M = const.

If the moment of momentum is initially zero, it remains zero, even for a
system with internal motion. From this it does not follow, however, that
the angular position of the system is conserved permanently. Rather, this
angular position can be varied ad libitum with the help of internal forces
alone, and without a push against some outside object.

An example of this is the cat, which always manages to fall on its feet.
It achieves this by suitable rotation of the anterior extremities coupled
with opposite rotation of the posterior ones. This action is illustrated
by the rapid exposure photographs published in the * Comptes Rendus of
the Paris Academy,” 1894, p. 714.

The essential points of this process can conveniently be followed by
means of an experiment with a turning stool. Such a stool consists of
a horizontal disc which revolves with as little friction as possible about
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o vertical axis. The victim of the experiment is seated on the disc, initially

at rest:

Mozo.

He lifts his right arm forward and describes with it a backward rotation.
The * area swept out >’ in this process must be compensated by a counter-
rotation of the remainder of the body including the disc of the stool. More
precisely, the moment of momentum M, of the moving arm induces a moment
of momentum of torso and dis¢ M, such that

M,=—M,.

The experimental subject now lowers his arm; this causes no change in
M. Now the initial position of the body is restored, and the process
can be repeated. With each repetition the same counter-rotation M,
takes place. After n repetitions the subject notices that he is facing in a
direction opposite to the initial one. In contrast to the position of the
center of mass, the angular position is not fixed by the initial state of rest.

One can strengthen the effect by making the subject hold a heavy
weight in the right hand. The ‘‘ area swept out ” is thereby, so to speak,
multiplied, so that the counter-rotation is also visibly increased.

Let us perform two more experiments: the subject stands on the stool
with lowered arms and is given an angular momentum M,; he now raises
his arms (with weights in his hands if desired) sideways; the rotation
suddenly decreases. Instead, we can set the person spinning with out-
stretched arms; he next lowers his arms and usually falls off the stool
because the rotation, especially when weights are used, is suddenly increased
considerably.

In both foregoing cases

M,=M, and therefore I wy=1I;w, from Eq. (11.6).
In the first case, however, we have
I,<I, and hence w;<€wy,
whereas in the second case
I, >I, so that ;> w,.

The changeability of the moment of inertia under conservation of
‘flnggllar momentum is used extensively in all athletic feats, especially
m exercises on the horizontal bar. Consider, for example, the ‘‘ forward
upswing.”” In the initial act of acquiring swing the body is stretched, its
moment of inertia great, and its angular velocity about the bar moderate.
As he swings forward, shortly before reaching the highest point, the per-
former pulls in his legs, reduces his moment of inertia about the bar and
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his angular velocity becomes high. His mass center swings over the bap
and the performer achieves an upright position on the bar. Notice that the
reactions produced by the grasp of the hands on the bar do not influence
the angular momentum to any noticeable degree since the bar is so thin _‘
that the forces of reaction have a vanishingly small lever arm. ,

The same principles are used in the *“ circles,” (backward hip circle,
knee circle, etc.). Gymnastics, ice skating and skiing are, in a way, practical
lessons in experimental and theoretical mechanics.

(5) Mass Balancing of Marine Engines

Let us finally consider an illustration on a Jarge scale, the Schlick
method for balancing the reciprocating masses of marine engines.

In the transition period leading to the modern express steamers, toward
the end of the last century, the shipbuilding industry went through a
crisis. For technical reasons the speed of revolution of the propellor
shaft is fixed at approximately 100 per min. The inertial effects of the
piston engines, which have to be absorbed by the ship’s body, change in this
same rhythm. As the length of ships was increased more and more, the
“ proper frequency ”’ of the vessel was continually depressed, so that
this frequency came dangerously near to the rhythm of the inertial effects.
Let us anticipate by using the word ‘‘ resonance,” a, phenomenon with
which we shall deal at great length in the next chapter. The word originated
in acoustics, where resonance phenomena are most immediate and where
they were studied first.

For lack of space the steam cylinders of fast steamers have to be
arranged vertically. Let us assume, to make things specific, that we are
dealing with four pistons (cf. Fig. 17), which are all connected to the same _
crank shaft oriented lengthwise, along the z-direction in our diagram. We
shall see that for a smaller number of pistons a mass balance even to first
order (to which we shall restrict ourselves here) is impossible. With the
choice of coordinates of Fig. 17, the inertial forces are directed along the
z-axis; they give rise to moments only about the y-axis. The inertial
effects must be absorbed by the reactions of the body of the ship, in which
they induce rhythmic countervibrations.

This is beautifully illustrated by the models which Consul Otto Schlick
donated to the German Museum in Munich at the time of his invention.
The ship’s hull is here idealized as an elongated beam; it is suspended
by spiral springs which represent the buoyancy of the water and enable
the ship to oscillate. When the engine models carried by the beam are set
in motion, the beam starts oscillating with slight amplitude. If the speed
of revolution of the engines is increased, the vibrations of the beam grow
larger the more the rotation frequency approaches the fundamental proper
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frequency of the beam (cf. Fig. 18). Great amplitudes of oscillation would
nave disastrous effects on the safety of the ship—and also on the wellbeing
of the passengers. The idea of mass balancing is to bring about a cancella-
tion of the inertial forces and torques of the reciprocating masses of the
marine engine in order to protect the ship’s body from their harmful effects.

If we pass at once from accelerations to position coordinates, the balancing
of the inertial forces, which are all in the z-direction, demands that

(15) Z‘ka,czo.

The masses M, include not only those of the pistons and piston rods, bub
to first approximation
also those of the con-

necting rods and portions Q.“ Axss
of the eccentric parts of ty 2 3 p
the crank shaft.
Just as important is L|
the balancing of the A | mfr—
moments of the inertial 92,
forces. It is mentioned P R i
above and made plausible < i
by Fig. 17 that only the 7
moments about the y- m A 2-Axrs " 5
axis play any role here. | L:l =TT Ty . i

Again we immediately = ?

pass from the accelera- Fig.17. Schlick mass balance of a vertically arranged
tions to the position four-cylinder piston engine. Diagram at lower right
coordinates, which is shows the position of the four crank pins relative to

S e
permissible since the lever 2" °ther

arms, i.e., the a of our
Fig. 17, are constant. We then require

We now express the piston coordinates z, in terms of the crank pin

Fia. 18. Proper frequency of a freely vibrating beam as a model for the fundamental
frequency of a ship.

coordinates ¢,. From Fig. 9 and Eq. (9.6) we have, to a first approximation,

(17) T3 173 cos ¢p= const.
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First approximation? here means that we pass to the limit of an infinitely
long connecting rod, or rfl—>0. We shall not go into the calculation to
second order where the first power of 7/l is retained, as in Eqgs. (9.5) and (9.6).
Since all the pistons work on the same shaft, the ¢, are equal to each other
apart from a phase shift a; constant in time;

(18) $p =1t

where o;=0 and «,, 3, o, can be chosen at will. By virtue of (17) and
(18}, the variable part of the conditions (15) and (16), which alone concerns
us, gives

(19) szrkcos(qSl-{— o) =0, ZMkrkakeos(gb1+ o) =0.

If we expand the trigonometric functions, we see that with ¢, arbitrary the
factors of cos ¢; and sin ¢, must vanish separately. We then obtain four
equations between the parameters o, and a,.

ZMkrk cos a, =10, ZMkrk sin o, =0,

(20)
ZMkrkak cos o, =0, ZMkrkak sin o, =0.

The M, and r, are fixed by construction. The quantities at our disposal
are the three phase displacements a,, o4, «,, and the two lever arm ratios
ay: @31 a, [the absolute magnitudes of the a do not enter in Eq. (20) 1,
altogether therefore five parameters; they allow a certain freedom of choice
in fulfilling conditions (20). This freedom in turn makes it possible to avoid
solutions which are technically objectionable. The preceding shows that
the mass balancing can be carried through to first order in four-cylinder
engines; it also shows that for lack of enough parameters it cannot be
effected in engines with a smaller number of cylinders, as asserted above.
The external characteristic of the Schlick mass balancing method is that
the pistons of a four-cylinder engine are not equidistant and that their
crank pins are not arranged at equal angles to each other. The latter
feature is illustrated in the lower right-hand corner of Fig. 17.

The Schlick method proved its worth in the first modern steamers
of the Hamburg-America Line; it eliminated the danger of resonance.
It is true, however, that it had only a transient importance in the practices
of ship-building, since piston engines were soon to be displaced by turbines,
where there are no reciprocating masses. Even nowadays, however, mass
balancing is important in automobile and airplane engines as well as in the
Diesel engines of submarines.

* This first approximation defines the mass balancing to first order {i.e., the ¢ balancing
for primary forces and primary couples,” as it is called). Since we want to restrict
ourselves to the latter, we need not carry out the second approximation,
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(6) General Rule on the Number of Integrations Feasible in a Closed
System

A mechanical system is called closed if no external forces, but only
internal ones, act on it.> In that case the equations of linear and angular
momentum become principles of conservation. The conservation of
momentum introduces 2 - 3 constants, that of angular momentum 3 con-
stants of integration.® The equation of energy yields one additional
constant. We therefore have a total number of

(21) 2.34+34+1=10

integrals of the equations of motion.

So much for the three-dimensional case. In the case of two dimensions,
such as the two-body problem of astronomy, we have only one component
of angular momentum (directed perpendicular to the plane containing the
trajectories of the two bodies), so that we obtain, together with the integral
of energy,

(22) 2-241+1=6

generally feasible integrals.
In the one-dimensional case this number evidently reduces to

(23) 2-1-+0-+1=3.
The general expression for » dimensions is

(24) n—]—l+%~n(n+l).

The best method of clarifying this expression is to appeal to the concepts
of relativity: we put »=3 and add the time as the fourth coordinate.
We must then form the four-vector momentum which is obtained from
Eq. (2.19) by summing over all the particles of the system. The basic
equations of relativistic mechanics now tell us that for a closed system this
four-vector remains constant; incidentally its time component is, apart
from a factor —ic and an additive constant, equal to the kinetic energy.
The four integrals thus obtained (conservation of momentum and energy)
are represented in (24) by the term n-1. The second term of the expression
is the result of the combination of two axes at a time in the formation of
moments. Evidently the combination of two space axes yields the equations
of angular momentum in the ordinary sense. The combination of the
time axis with one of the space axes, on the other hand, gives the second

® Every systemn becomes closed, of course, if one makes it large enough, i.e., if one
includes the sources of the external forces in the system.

® The 2-3 constants arising from the equation of the straight line described by the
center of mass, and the three areal velocity constants.
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integrals of motion of the mass center which express the rectilinearity 3
of this motion. For according to (2.19), if we indicate summation over al] 2
mass points by a bar as on p. 70 and replace (1— B2)t by unity from the |
start, we calculate

T, Py— Ty Pp=ic{m x, —t myx,), k=1,2, 3.

From the principle of conservation of angular momenta this quantity
must be equal to a constant, which we may call icA,. In three-dimensional
vector notation and with the symbols of (3a, b) we then have

(25) R—tV=A.

With A and V constant this means that indeed the mass center moves in a
straight line with constant speed. The foregoing should be sufficient
explanation for the origin of (24); the use of the four-dimensional space-
time symmetry has lent additional clarity to it.

We wish finally to make a remark concerning the enumeration of (21)
and (22) pertaining to the field of astronomy. The famous three-
body problem would need for its complete integration, i.e., for a determina-
tion of its 3 -+ 3 coordinates and 3 - 3 components of velocity,

(26) 2-3.3=18

first integrals. Each of these, as exemplified by Eq. (25), would give one
relation between the position and velocity coordinates involving one constant
of integration. But a comparison of (26) with (21) shows that we are
lacking eight integrals for the complete integration; above and beyond
this the unrelenting efforts of the greatest mathematicians from Lagrange
to Poincaré have shown that the missing integrals cannot be obtained in
algebraic form; a conclusive proof of this was given by H. Bruns.

A similar enumeration for the two-body problem, plane by its very
nature, requires only

2-2-2=8

instead of 2 - 3 - 3=18 constants of integration for its complete integration.
Thus only two constants are required beyond those which according to
(22) are in all cases available for a two-dimensional problem. As a matter
of fact these two integrals with their corresponding arbitrary constants can
be found here, as shown by the transition from Egs. (6.4) to (6.5). Hence
the two-body problem can be solved exactly; the three-body problem is in
general insoluble, i.e., it can be solved only by analytical approximation
methods. It is only under very special assumptions about the type of
motion that we shall be able to find a solution in closed form for the
latter problem in § 32.
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§ 14. The Laws of Friction

As already emphasized in § 11, subsec. 4, the guiding of a mass on a
prescribed path introduces a component of reaction along the path direction:
which cannot be obtained from general principles of mechanics, but must
be determined experimentally. Apart from some preliminary work of other
investigators this determination was carried out for the first time in 1785
in the famous, and for those times very accurate, experiments of Ch. A.
Coulomb, whose name, we recall, is permanently linked with the basic
laws of electrostatics and magnetostatics,

With Coulomb we distinguish
(@) Static friction
(b) Kinetic or sliding friction.

=

‘”’M’ /’ L A

Yw

Fia, 19. Static friction on plane support. Fig. 20. Construction of the angle
of friction and the cone of friction.

(1) Static Friction

Consider a body resting on a horizontal support. If we exert a gradually
increasing pull P on the body parallel to the support, no motion will occur
at first. We must therefore assume that a force of friction F balances the
pull P. If, however, P exceeds a very definite limit, acceleration takes
place.

. This limit Fox 18, according to Coulomb (and his predecessors), propor-
tional to the normal pressure N, which in the case of rest on a horizontal
Support is simply equal to the weight @& of the body. We have

(1) Fmax=f"‘0N°

Ho 18 the coefficient of static friction; it depends on the nature and the state
of the surfaces of the two materials in contact. If the two materials are the

Same, u, is especially great (interpenetration).
By means of

(2) po=tan ¢

one can introduce an angle ¢ which can be thought of as the vertex angle
of a ““ cone of friction.” As long as the resultant of the two forces F and N
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falls inside this cone, no motion takes place, ¢f. Fig. 20. Motion occurs
when their resultant lies in the surface of
the cone or outside it. P

The significance of the angle of friction
18 illustrated by experiments with the inclined
plane (Fig. 21) which go back to Galileo.
We write down without further explanation

N
&

Fie. 21, Equilibrium on
an inclined plane,

N=Gcosa, P=@Gsina=—F.
From

F<F . .=pN=N tan ¢
we therefore obtain as the condition of rest

G sin o <tan ¢ cos &+ @
80 that
tan « <tan ¢

or

« <.
The body remains in a state of rest on the inclined plane as long as a <4¢.
The angle of friction ¢ is therefore that
inclination of a plane at which sliding
will set im.

The following is a less trivial exam-
ple. An oblique arm is attached to a

— et v — g

vertical axle at an angle ;—T —¢a. This arm

carries a movable sleeve or head (cf.
Fig. 22). When the axle does not rotate the
bead is at rest or in motion depending on
whether « <¢ or a>¢. If now the axle
is set rotating, the centrifugal force
mro® is added vectorially to the force of
gravity mg. The normal force N resulting
from these two and the pull P along the  Fie. 22. Movable sleeve or bead

- 1 . on an oblique rotating rod.
gu1d1ng rod are, from the dlagram, Equilibrium under friction.

P ———— .

—f-
€

N=m(g cos atrw?sin «), P=-1m(gsin a—rw? cos a).

The double sign in front of P means that we count the pull positive downward
as well as upward, so that we can take into consideration a downward a8
well as an upward sliding of the bead.
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From (1) and (2) the bead is in equilibrium if
4-{g sin a—7rw? cos a) <tan ¢(g cos x+rw?sin a).

We now replace the < sign by an = sign, thereby obtaining the condition
for ** just sliding,” i.e., the limit of equilibrium. By trigonometric trans-
formation we carry out a separate calculation for the two cases .

+ sign, downward sliding: g sin (a4¢)=73w? cos (a-+¢},

— sign, upward sliding: g sin (a—¢)=7,w? cos (a—4¢),

or, collected together,

*1

b= £ tan («F ).

The force of friction hence results in a finite interval
T, <T <Ty

of 7 in which the bead is in equilibrium.

For a>¢ (the bead slides down as w—>0) both r are positive; the
smaller w, the greater the interval between them. With « <¢ (the bead is
in equilibrium under static friction for w—s>0) ;=0 (even negative according
to the equation) and only 7, is positive; with increasing w, r, approaches
zero as well.

(2) Sliding Friction

Here the law of friction
(4) F=uN

applies.

The coefficient of sliding friction p is roughly independent? of the velocity,
and, like p,, a constant depending on the nature of the materials and
conditions of the surfaces. It is universally true that

(5) = <o,

If the path along which the body slides is rectilinear, N equals the force
of gravity (or its component perpendicular to the path); if the path is
curved, we must, according to Eq. (11.15), add the effect of the centrifugal
force.

.We illustrate Eq. (5) by means of an extremely primitive experiment
which is, however, very surprising in its result. Let us put a smooth cane

" Experience in railroad operation (sliding friction between wheel and brakeshoe)

indicates that for high velocities v the factor g decreases monotonically with
increasing v,
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or walking stick over the forefingers of the right and left hand, held some
distance apart. From Fig. 11a the distribution of forces is

A=— G B=—@G.

+b
We now let the two fingers approach each other. Sliding occurs alternately
on the right and left fingers, until the fingers meet. Where on the stick
do they meet ?

Let A >B initially. The sliding therefore begins at B. B remains
in motion not only until a=5, but slides to the point b, <a where the
sliding friction of B equals the static friction of A. In general we have

G G
FB,szzPa;;ﬁ; ’ FA,stzi‘obm "

Putting these two expressions equal for =b,, we obtain

a o
== b s - = —
pO=yty b, n

> 1.

At this instant the stick must begin to move over 4. At once the
friction F,  falls to Fy 4 <F, 4, so that in b, the friction Fp o exceeds
that in 4; ie., B comes to rest, and Fp changes to Fg o

This process is now repeated at each turning pomt A and B thereby

approach in geometric progression (since the quotient #° ~, ocours each time)

the center of mass of the stick for which a=b=0. In the final state the
stick balances in equilibrium over the juxtaposed fingers.

We now return to static friction, which plays a decisive role in pure
rolling motion. Paradoxical as it may
sound, it is the static friction which P
drives a railroad train forward. (The
same i3 true of an automobile; a e N \F’
pedestrian on slippery ground likewise P _
propels himself only by means of static
friction.) The steam pressure is an =
internal force, and as such could never
set the mass center of the locomotive in

. . . and rail in a locomotive. For the
motion. To (.10 this an external ff)ree is caso of pure rolling tho static friction
needed. This external force is the provides the driving force of the
reaction between rail and wheel, i.e., train.
just the static friction.

Consider one of the driven wheels of the locomotive (Fig. 23). By
means of the connecting rod the engine transmits a torque L to the wheel;
its primary action would be to impart a rotational acceleration to the

- 7

Fi1c. 23. Reaction between wheel
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wheel. This is incompatible with the condition of pure rolling, Eq. (11.10),
(6) Z=rw.

Let M be the mass of the train per actuated wheel, B the resistance to
motion (air resistance, frictional losses in the axle bearings, etc.), I the
moment of inertia of the wheel, and F the force of static friction. The

equations of motion become
Mz=F—R,;
@ Ig=L—Fr.

The static friction F cannot be determined a priori; it can, however, be
obtained from the foregoing equations as follows. Let us at first eliminate

F from the equations
3 Mz=F—R;
®) M 2z=P—F.

equivalent to (7). P is the peripheral force corresponding to the torque L,
and M4, as in (11.8), is the reduced mass corresponding to the moment
of inertia I, i.e.,

L:P'r, I=Ml.ed7‘2.

From (8) one obtains

(9) (M+ M, i=P—R
and, by virtue of the first Eq. (8),

M . MP+ MredR.
(10) F=R+ 5731700 E— B)= “ 3+ Mrea

D’ Alembert’s principle could have furnished equation (9) directly. The
first Eq. (8) contains the quantitative proof of our assertion that the static
friction F is the driving force in the operation of a train. For in the case of
uniform motion it gives

R=F.

As the second Eq. (8) shows, the peripheral force P resulting from the steam
pressure has merely the function of calling into play the static friction at
the rails.

Another evidence of this is the fact that as trains have become faster
or the freight per train greater, locomotives have become constantly heavier.
This circumstance points directly to Coulomb’s law of friction, Eq. (1),
which states that the limit of static friction available is proportional to
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the normal pressure N. The well-known fact that static friction fails and
sliding occurs when the rails are too smooth (due to ice, or, for instance,
to lubrication from run-over migrating caterpillars) points to the other
factor pq in Eq. (1), which, as emphasized, depends on the state of the surface
of the rails. When the rails are too smooth, the factor u, must be artificially
increased; the sander serves this end.

i T




CHAPTER IIT
OSCILLATION PROBLEMS

The investigations that are to follow will teach us nothing new about
the principles of mechanics. So great, however, is the significance of
oscillation processes for physics and engineering that their separate systematic
treatment is deemed essential.

§ 15. The Simple Pendulum

The oscillating body is a particle of mass m which is attached to a
fixed point O by means of a weightless rigid rod of length I; [ is called the
length of the pendulum. We may neglect friction at the point of suspension
and air resistance, so that the only force acting is that of gravity,
with a component—mg sin ¢ in the
direction of increasing ¢ (cf. Fig. 24).
The general equation (11.14) for the
guided motion along an arbitrary path
gives us, with v=I¢ (circular path),
the exact equation

0

(1) mltgg = —mg sin ¢.

For sufficiently small oscillations,
¢ <1, we can put sin g=¢. With the

abbreviation Fig. 24. Simple pendulum. Com-
ponent of gravity along the
(2) %: w? direction of motion.

we then obtain the linear pendulum equation
(3) d—d;?+'w2q5:0.

This is the differential equation of ‘ harmonic oscillations ” as treated in
§ 3 (4). Apart from the designation for the dependent variable it is identical
with Eq. (3.23). The circular frequency « defined in (3.22) is now given
by Eq. (2) above. We therefore have

. (el

T l

87
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Notice that 7' is independent of the mass m, which dropped out already
in (1). Thus different masses have the same period if the pendulum length [
is the same. T is the full period, covering a complete swing to and fro.
Sometimes one half of this time is designated as the period of oscillation.
Thus one speaks of a “ seconds pendulum *’ for which 4 T equals one second.
Its length is calculated from (4) to be

I—

<

; = 1 meter.

3

To the extent to which Eq. (3) is valid the period of oscillation is indepen-
dent also of the amplitude of swing; i.e., small pendulum oscillations are
tsochronous.

The general solution of (3) has the form

¢=a sin wt+b cos wt.

If we specify that $=0 at t=0 and ¢=a at t=§, we must put =0 and
a=w, 80 that
(5) ¢=a sinwt.

« is therefore the amplitude of ¢, i.e., the maximum displacement of the
particle measured in units of angle (radians).

For finite deflections the isochronism is destroyed because of the non-
linearity of Eq. (1) which applies in that case. In order to integrate (1) we

multiply it on the left and right by d¢; this amounts to passing from the

dt
equation of motion to the equation of energy. An integration yields
2
(6) (%f) = 2w2cosp 4 C.

C is determined by the condition that %fzo for ¢=ua, i.e.,

C=—2w? cos «.

Alternately we can proceed directly from the equation of energy. With the
meaning of H indicated in Fig. 24 we obtain

2/ 74\2

(6a) ) (dif) +mgh=mgH
h=1(1- cos é)

where H=1(1-cos a),

which is evidently identical to (6).
Consider now the equality

o8 ¢— cos a=2 (sinzg_ sinz%) :
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we substitute it in (6) to obtain

(7) (

or

= wi.

(8)

S —j 15'S-

(sin2 % — sin? %)*

We have thus arrived at an elliptic integral of the first kind. In order
to explain this name we shall have to speak in passing of the * rectification
of the ellipse,” i.e., the measurement of the length of an arc of an ellipse.
Let us use the parametric form of the equation of an ellipse,

x=a sin v
y=>b cos v
from which we calculate
ds? = da? -+ dy? = (a? cos? v+ b2 sin? v) do?,
ds={a?— (a®— b?) sin® v]*dv.
We now put

a2..__bB

k2= 4 —( <1 for a >b),

and obtain for the length of the arc of the ellipse between the endpoint
v=0 of the minor axis and an arbitrary point » of the ellipse

(9) . §= aJW (1— kzsinzv)*dv.
0

This is an “ elliptic integral of the second kind.”
The elliptic integral of the first kind is the simpler of the two from
the viewpoint of function theory. In the  Legendre standard form 7 it 18

v dv .
o (1—Kk* sin? v)?

We shall put our integral (8) in this form by means of the transformation

sin ¢ —sin £

3 2-s'm'v.
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(10) (sinzg — sinzg)}ﬁ sin % cos v,
¢
43 dv dv
= = b
(s,inz g — Esinz%)ir cos% (1—k2sinto)t

where the *“ modulus * k stands for
(11) k—sin o
If we wish to calculate the period 7', we must put in Eq. (8)

T
t=; and ¢=gq,

so that, according to (10), v=g .
tegral of the first kind,” which is designated by the letter K,

7
(12) K—f2__ % |
o (1—k?sinto)d

w being defined by (2), we then obtain from (8) the period

This yields the so-called ‘‘ complete in-

(13) T=4K(3)*-

From (12) we can read off directly that
K =l2‘ as k——0, i.e., according to (11), for sufficiently small amplitudes «;
K=o as k—->1, i.e., according to (11), for a=m, 180° swing to upright
position.
In the first case we obtain our former expression (4), as would be expected.
In the latter case the deviation from this expression reaches an extreme.
In general a binomial expansion and term-by-term integration of (12)
leads to

m k* 9kt
K:§(I+Z+ﬁ+ e )
The corresponding expression for 7' is

(14) Tzzw(é)*(lJrisinngrg’;sin4f’-2°+ . )

which gives the deviation from isochronism for finite deflections in quantita-
tive fashion.

Astronomical clocks have simply-constructed pendulums with a <14°.
For them the first correction term in the parenthesis of (14) amounts to
approximately 1 part in 20,000.
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§ 16. The Compound Pendulum

This problem is essentially that of rotation of a rigid body about
a fixed axis, treated already in § 11, subsec. 1, from which it differs only
in that the external forces are now specified to be gravitational. Let s
be the distance of the center of gravity G from the fixed axis O [we use the
term * center of gravity > deliberately here, though, from (3.12), it coincides
with the center of mass]; moreover, let ¢ be the angle which the line OG
makes with the vertical. The total moment L of the gravitational forces
acting on the individual elements of mass dm is evidently

(1) L=—mgs sin ¢,

where m is the total mass; from (11.4) the equation of motion is then
(2) I = —mgs sin ¢.

A comparison with the equation of motion (15.1) of the simple pendulum
shows that the length I of the equivalent simple pendulum, ie., the simple
pendulum having the same period of oscillation as our compound one, is
(3) = L.

ms
Let us replace I by the so-called radius of gyration a, defined by
(4) I=ma?.

The radius of gyration is therefore that distance from the point of suspension
O of the pendulum at which we must concentrate the total mass m in order
to obtain the moment of inertia I of the actual mass distribution. Note:
in (11.8) we introduced a “‘ reduced mass > for the distance r at which the
initially unknown mass M,q was to be placed; here, per conira, the mass
m is given and we are looking for the distance a at which this mass is to
be located.
Comparison of (3) and (4) shows that a is the geometric

mean of s and I,

(5) az=ls. ﬂﬁ

Let us now lay off the equivalent pendulum length I from O o
along the center line OQ of the pendulum. The point P thus
obtained is called the center of oscillatior. (Huygens). Fig. 25
shows the relative positions of 0, G and P and allows us to \2‘ d
form a picture of the relation between s, @ and [. '

Fig. 25. Point of suspension O, center of gravity @, and center of
oscillation P of a compound pendulum. The radius of gyration a is the
geometric mean of the equivalent pendulum length [ and distance from ij
center of gravity s.
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We now claim that the roles of O and P are interchangeable. So far
O has been our point of suspension, P the center of oscillation. We shall
now take P as the point of suspension and show that O becomes the center
of oscillation. This is the idea underlying the reversible pendulum.

The scheme below tabulates the symbols so far used and completes
the list for purposes of what is to follow.

Point of Center of ‘ Equivalent | Moment of Radius of | Distance of
Suspenston Oscillation ! Pend. Length Inertia Gyration Mass Center
0 ’ P * l ( I a 8

Our assertion is that

Ip=1, ie., 0'=0.

Proof: let us calculate I from equations (3) and (4) rewritten in terms
of the corresponding new symbols. We have

2
6 __Ir % |
(6) lp= m{i—s) =

Now according to Eq. (10) of the supplement to this section
(6a) a%=1I(l—s)

so that indeed the last member of (6) equals I.

The pendulum is used in the determination of the gravitational accelera-
tion g at different points on or below the surface of the earth. Since
in practice no simple pendulum is available and since in a compound
pendulum the moment of inertia I cannot be calculated accurately (not
only because of the complicated shape of the bob, but also because of possible
internal inhomogeneities), one is forced to resort to the experimental method
of the reversible pendulum for the determination of the equivalent pendulum
length. We have to imagine that the pendulum of Fig. 25 is provided
with two knife-edges for its points of support, one at O and one at P, the
latter with its edge facing up, and both with their triangular cross-sections in
the plane of the drawing. The knife-edge at P can be moved up and down
by means of a micrometer screw. Given a sufficiently long period of observa-
tion the number of oscillations can be counted with very great accuracy,
so that the equality or inequality of the periodic times for oscillations
about O and P can be determined exceedingly precisely, and, if necessary,
corrected by means of the micrometer screw.

The principle of the reversible pendulum is a first illustration of a type
of very general reciprocity relation which recurs in all branches of physics.
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Another example of such a relation is the interchangeability of source
point and field point (* Aufpunkt ) in acoustics and electrodynamics.

SupPLEMENT: A RULE CONCERNING MOMENTS OF INERTIA

We have in mind the rule of parallel axes, which states that the moment
of inertia of a body of mass m about an axis through an arbitrary point O
is equal to the sum of its moment of inertia about the parallel axis through
the center of mass G and ms?, where ¢ is the distance between G and the
axis through O.

If y is the direction of the axis in question and z the direction from
0 to G, the distance r from the axis through O of some element of mass dm
must be

ri=gx24-22.

Here z is measured from O. If, instead, # is measured from @, and if,
as in Fig. 25, OG'=s, we have

ri=(x4-8)2+22=a?4- 22+ 2xs 482
If we sum over all dm, it follows that
(7) I=IG+28fxdm+msz.

The middle term vanishes [cf., for instance, Eq. (13.3b)] provided the
plane x=0 passes through the center of mass. If this is the case,

(8) I=14+ms?,

as asserted above.
Accordingly we have from Fig. 25 that

(8a) I,=I,+m(l—s)2
But from (8) and (8a)

I,—I=ml2—2mls
which, in view of (4), can be written
(9) a%—at=12—2ls
or, by virtue of (5),
(10) ai=1-ls=I(l—s).

This is the relation that was used in (6a).
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§ 17. The Cycloidal Pendulum

This pendulum was invented by Christian Huygens!, the most ingenious
watchmaker of all time. Its purpose is to eliminate the lack of isochronism
of the ordinary simple pendulum. This is achieved by making the mass
point move on a cycloidal instead of a circular arc. Later on we shall
see how this motion can be realized in practice.

The parametric representation of a common cycloid is

r=a{¢$—sin ¢),
y=a({l — cos ¢).

The parameter ¢ is the angle through which a wheel of radius a rolling on
the horizontal z-axis has turned from its initial position. The common
cycloid is generated by a point on the periphery of the wheel (Fig. 26).

(1)

Y
:Y
L
@=0 g=v p=21 -

Fig. 26. Generation of common cycloid by point on the periphery
of a rolling wheel, Definition of angle of rotation ¢.

For our pendulum we need a cycloid that has its cusps at the top rather
than on the bottom (cf. Fig. 27 on p. 96); this is generated by having
our wheel roll on the underside of the z-axis. The z of such a curve is that
given in (1} while its ¥ is obtained by subtracting the y given in (1) from 2a,

x:a(ﬁﬁ“ sin ¢’):
y=a(l--cos ¢).

The component of gravity mg along the tangent of the trajectory (in our
case the cycloid) is

(2)

F,=—mg cos (y, 8)=— mg%-
The general relation (11.14) therefore yields
(3) my= — mg% s

where, just as in the case of the circular pendulum, the mass m cancels on

1 Horologium Oscillatorium, Paris (1673). Collected Works, Vol. 18, The Hague (1934).
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the left and right. Differentiation of (2) gives
de=a(l—cos ¢)dp, dy= —asin¢ dd.
ds2=a?(2— 2 cos $)d$?, ds=2asin %dq&.

Thus In our case

(4) vﬂ%=2asm%%:—4a‘%cos%
and

B & e —cos §

If we replace (4) and (5) in (3), we obtain

® T oot = foont:

This equation differs from Eq. (15.3) of the simple pendulum only in that
the dependent variable is now called cos % rather than ¢. This is of course

of no consequence for the integration of (6). The earlier Eq. (15.4) there-
fore holds unchanged, viz.

(7) T=2n(5)! with 1=4a,
the latter because in (6) 4a took the place of our former I.

Eq. (15.3) described only the small displacements of a simple pendulum
and was obtained from the exact relation (15.1) by an approximation;
our present equation (6) and Eq. (7) resulting from an integration thereof
are, on the other hand, exact for oscillations of arbitrary amplitude. The
cycloidal pendulum is then rigorously isochronous; its periodic time 1s
completely independent of the amplitude of oscillation.?

As regards the method used, we notice that in (6) the motion of our
particle was represented not by its Cartesian coordinates or by some para-
meter bearing an immediate relation to the cycloidal curve, but by one half
the angle of rotation ¢ of the wheel generating the cycloid. We see that

? The cycloid can also be called tautochrone {oscillations on a cycloid are * igochronous
to each other ™*); it is also called brachistochrone (because it answers the question,
“ on what curve must a mass acted on by constant gravitational force slide in
order to traverse the distance between two given endpoints in the least possible
time ? ? Tt turns out that the mass takes less time on a cycloid than on a straight
line or any other curve joining the same points). The brachistochrone problem
is all the more notable because it was for it that the first principles of the Calculus
of Variations were developed.
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this parameter, although only indirectly connected with the cycloid, provides
the simplest method of approach to the problem. Its introduction gives
us & foretaste of the general Lagrange method of Chapter VI, which enables
us to introduce arbitrary parameters as dependent variables in the equations
of motion.

Just as remarkable as Huygens’ discovery of the isochronism of the
cycloidal pendulum is the way in which he actually achieved the frictionless
motion of the bob on the cycloid. He availed himself of the rule that the
evolute of a cycloid is another cycloid equal to the generating one. If,
therefore, we tie a string of length I=4a to the point O of Fig. 27 in which
the two upper cycloid arcs form a cusp, and if this string be pulled taut
so that it rests against the right part of the cycloid (or the left part if
deflected to the left), the endpoint P of the string describes the lower
cycloidal arc. The guiding of the
bob along the lower cycloid effected
in this manner is almost as friction-
less as the guiding of the simple
pendulum along a circular arc.

Actually Huygens’ idea has been
abandoned in the practice of pendu-
lum clock construction; according to
investigations of Bessel among others Fie. 27. Huygens' isochronous oy-
it is sufficient to install a spring — cloidal pendulum.
usually a short elastic lamina — at
the upper end of the pendulum. If the length of the lamina and the mass of
the bob are suitably chosen, a sufficient degree of isochronism is achieved.

§ 18. The Spherical Pendulum

We require the pendulum to be suspended in such a fashion that the
mass point m is able to move freely on the surface of a sphere of radius !
(the length of the pendulum). It is then subject to the condition of
constraint ‘

(1) F=3(@+yr+2-1)=0,

where the factor % has been added for convenience’s sake.

Here 7, the number of conditions of constraint, equals 1, and X,;=X,=0,
X ;= —mg, so that the Lagrange equations of the first kind (12.9) take the
form
mx— Az,
(2) my = Ay ’
mzZ= —mg- Az.
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In view of Egs. (13.13) and (13.13a), elimination of A from the first
two equations (2) yields the constancy of angular momentum about the
z-axis, or, what amounts to the same thing, the conservation of the areal

velocity

3) ‘fg yif=2%‘=0 (S=area swept out).

If, on the other hand, we multiply the Lagrange equations (2) by x,
y, 2, we obtain the equation of energy, for condition {1) is independent
of ¢ (cf. p. 68). Addition yields

4) m(xE+gy+22) =~ mgz+Axz-+yy-+22).
But from (1)

= =zx+yy+z2=0.
On the other hand we evidently have

BE+yitsi=) S5 G

Integration of (4) with respect to ¢ then gives
(5) %vz= — mgz+const.,
which we shall write in the form

(5a) T+ V=F with V=mga.

Let us finally multiply the Lagrange equations by z, y, z, respectively.
With the aid of (1) this allows us to calculate A,

N2— mgz=m(xL-+yy-+22)

or
A xr.. y-- AR .
(6) /\lzmgz —i—m(1x+ l—y+ zz)
Now the nmormal to the surface of the sphere at the point x, ¥, z has direction

cosines > 7 ?l’, %, so that apart from sign the second term on the right is the

inertial force F, * normal to the spherical surface; similarly the first term
on the right is, apart from sign, the component F, of gravity in the same
direction. According to d’Alembert the sum of these two must be equili-
brated by the reaction R, of the surface of the sphere, or, physically speaking,
by the tension in the pendulum suspension. The meaning of Eq. (6) can
hence be summed concisely by the equation

(7) M=~ (F,+F, *)=R,.
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We notice that within a factor I, A is the constraint which is exerted on
the motion by virtue of condition (1), this constraint acting in a direction
normal to the motion. Corresponding statements hold in more general
cases where several conditions of constraint and therefore several Lagrange
multipliers are present.

In order to carry out a second integration of (5) we shall pass to spherical
coordinates given by

x=1 cos ¢ sin 0§
y=1sin ¢ sin &
z=1cos 0.
We form

2=18 cos ¢ cos 8~ 1 ¢ sin ¢ sin 6,

y=I 6 sin ¢ cos 8-+1 ¢ cos ¢ sin 4,

z=—10sin 6.

The equation of conservation of angular momentum (3) becomes

ds |

8) 2T =ay—yr=Psin?0.$=C

and the equation of energy (5a},

(9) (624 sin?6 ¢%) + mgl cos 6—E.

A further change of variables

1 du
(1—u?)t dt

u=cos 0, = —

transforms (8) into
Fic. 28. Spherical pendulum treated

(10) ?5 — _¢ as mass point m moving under gravity
Pl—uf) on the surface of a sphere of radius /.

and (9) into

(11) (%)2: Uw)= -2 (E — mglu) (1 — uz)_%f.

m

This relation between ¢ and % allows us to find ¢ as a function of u,

(12) - f gu.
Eq. (10) can now likewise be written in integrated form, for from (10) and (11)

ap_ . d_ O 1
du = ¢ du~ B(1-—-u?) Ul

/ 3!
R T N i
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go that one obtains

C du 1
(13) $= rsz:“uz'm‘
{7 is a function of third degree in =cos #. Ut is real only for U >0.

If then the constants of the equation correspond to a real physical problem,
there must be two values u=u, < u=1%, in the interval

—1<u<+1

petween which U is positive (cf. Fig. 29).
u,=cos §; and u,=cos 6, are the two latitudes between which the mass
point oscillates back and forth. If the integration of (12) or (13) reaches
one of these limits of u, not only the direction of integration but also Ut
must change sign, in order that the integrals remain real and positive.
Between two successive turning points one quarter of the full period of
oscillation elapses, i.e.,

{lU Uy

c

Fig. 29. Curve of third degree U{u) Fra. 30. * Bird’s-eye ” view of the path
and its intersections u=wu, and u=u, of the spherical pendulum. Angle of pre-
with the abscissa. %, <u, <0 means cession A¢. A passage from 6, over 0,
that the trajectory is located in the back to 6, corresponds to a half-period,
lower hemisphere. A¢ therefore to a full cycle.

Note that now the oscillation is no longer periodic in space as in the case
of the pendulum moving in a plane, but is modified by a slow precession.

The angle of precession 4¢ by which the mass advances (or recedes) in a
full period T is calculated from (13) to be

Uy
4 d

Uy
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This precession is illustrated in Fig. 30, which is taken from A. G. Webster,
“ Dynamics of Particles,” Leipzig, Teubner.(1912), p. 51.

The integral (12) is an elliptic integral of the first kind, just like the
integral (15.8) for the simple pendulum. This is the generic name applied
to all integrals whose integrand contains the square root of a polynomial
of the third or fourth degree in the variable of integration in the denomin.
ator. That Eq. (15.8) falls in this class can be seen by introducing the

transformation u:sin%, so that » becomes our variable of integration; if,

moreover, we put a;:sin%c , (15.8) goes over into

du .
[(a®—u?) (1—u?)}d

In particular, expression (14) for 7 is, just like (15.12), a complete
integral of the first kind. On the other hand, integral (13), which has
the two factors (14-u) in addition to U¥ in the denominator, is an elliptie
integral of the third kind,” and (15) is a ‘ complete elliptic integral of the
third kind.”

Problem III.1 shows that for infinitesimal oscillations the equation
expressing the motion of the spherical pendulum becomes elementary and
the angle of precession A¢—-0.

§ 19. Various Types of Oscillations
Free and Forced, Damped and Undamped Oscillations

Free, undamped oscillations were treated in § 3, subsec. 4; we called
them harmonic oscillations. At this point we shall consider, first of all,

Undamped, Forced Oscillations
We shall take as their differential equation

(1) mx+4-kx=c sin wt,

where wz%" is the circular frequency of the driving force.

We have here made the differential equation linear in the dependent
variable x, which is permissible, at any rate, for small oscillations (cf.
simple pendulum). The same remark applies to the remaining examples
in this and the following section.

The restoring force is —kx as in (3.19); ¢ of Eq. (1) is the amplitude
of the driving force causing our particle to oscillate.

By virtue of the addition of the right member, (1) is an inhomogeneous
linear differential equation. The left side, when set equal to zero, gives
the associated homogeneous differential equation, as previously mentioned
in connection with Eq. (3.23).
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A yparticular solution of the inhomogeneous differential equation 1is
given by
r=Csin wi,

where C must satisfy the equation

Clk—mao?)=c.
If, with (3.20) as model, we put
(5
we obtain
(3) 0=

The general solution of (1) is formed from this particular solution and
the general solution of the associated homogeneous equation:

4) x=Csin wit-+A cos wyt-+Bsin wyt.

The amplitude C of the first term grows with increasing w to become infinite

for w=w,; thereupon it jumps to negative infinity, and decreases slowly

in absolute value toward 0 as w—c0.
Actually, when € becomes

negative the amplitude does

not change sign, for amplitudes 4

are positive by definition. We

therefore continue to define the  a)

amplitude by | C | and put the

change of sign that takes place - @
into the sine factor, where it 4 ’

appears as a phase change of %) Do >
0= +r. - L .........

The foregoing is illustrated
in Figs. 31a, b, where | C|and Fie. 31. Amplitude and phase of undamped
6 have been plotted as func- forced oscillations.
tions of w.

In Fig. 31b we cannot @ priori decide whether the phase leads or lags
for w > wy, i.e., whether we are to take 8= 4= or 8= —=. We shall, however,
anticipate and consider undamped vibrations as a limiting case of damped

vibrations (see below); this leads us to decide in favor of —m, so that
the first term of (4) can be written in detail

(4a) - w;’/_”;oz sin (wt ) ( > wy).
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The fact that the amplitude becomes infinite for w= w, illustrates the
phenomenon of resonance between free and forced oscillations, a phenomenon
that plays an important role in all of physics. The denominator of (3)
and (4a) whose vanishing causes this infinite amplitude is called a *‘ resonance
denominator.” It is intuitively clear that the closer the proper frequency
of the oscillating system is to that of the driving force, the better the system
will follow this force.

Incidentally we must keep in mind that we are guilty of gross extrapola-
tion when we deduce infinite amplitudes at resonance, for in almost all
cases our linear differential equation holds only for infinitesimal oscillations.

So far we have directed all our attention to the first term of the right
member of Eq. (4). The other two terms are determined by the initial
conditions. Let us take

x=0, x=0 at {=0,
so that, from (4),

A=0, w C+wy B=0, hence B=—2C,

0

It follows that

(5) x:O@mwb—%ﬁnw@)

0

Let us make the content of this equation clearer by considering the special
case of near resonance of the two frequencies w and w,,.
We put

w=wyt+dow

and expand

. w . . . Adw .
sin wt— o, SIN wol =i wol -+t A cos wyl—sin wt— o, SN @l

Eq. (5) then yields

x=C Aw(t cos wol — L sin wot)_
Wy

and, by virtue of (3), in the limit 4w=0,

(6) =

=5 (sin wot— wyf cOs wyl).
i)

This type of oscillation, illustrated in Fig. 32, is no longer periodic as
was that of free oscillations; indeed ¢ appears in (8) as a secular term
(ie., no longer solely in the argument of a trigonometric function). For

i
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> the amplitude approaches the value ('= o as indicated in Fig. 31
for the case w= w,.

Fic. 32. Resonance of free and forced oscillations.
Secular increase of amplitude.

Free, Damped Oscillations
These have the differential equation
(7N mz +kr=—wz .

The frictional term on the right has been put proportional to the velocity,
an assumption which finds its justification in the hydrodynamics of slow,
laminar (=non-turbulent) flow (e.g., air friction).

Eq. (7) is a homogeneous linear differential equation. As before we put

(7a) ,’% = w2, wy=undamped proper frequency.

Let us also make the convenient change of symbols

(7b) % =2p, p>0.

Eq. (7) then takes.the form
(8) z+2px+ w§x=0.

The method described under Eq. (3.23) now proves its full worth. As
there, we substitute

(8a) x=CeAl

In (8) and thus obtain the characteristic equation in A,
42 p A+ wi=0

with the two roots

A== p (- wdt e ={ 2t
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Expression (8a) must therefore be generalized to
(8b) x=CeMl4-Cerst,
We now distinguish two cases:
1. p< w,, 2, p>uw,

The first case is that usually prevailing in practice. The motion is a periodie
oscillation with decaying amplitude. The second case is that of strong
or * aperiodic ” damping. In both cases we shall specialize the motion
by imposing the condition, =0 at {=0, which, according to (8b), leads to
Cy=—0C}.
L p<ay A= phi(wi—pd),
-

x:QOle_p‘ sin (wg— p?)'t.

For small p the periodic time

2

T= =i

differs little from that of the undamped oscillation. e P!is the damping
factor, pT' the logarithmic decrement.

2. p>w, Ay and A, are real and we obtain

x=2Ce~P! sinh(p?- wﬁ)*t

where sinh is the hyperbolic sine.
We shall finally deal with a type of oscillation including all those so
far considered, namely that of

Damped, Forced Oscillations

We may write their differential equation in the form

ma+wx +kx=c sin wt

or, with the abbreviations defined in (7a, b),

(9) x+2px—|- wga;: 57%_7, (¢iwt_ g—iot),

To the general integral (8b) of the homogeneous equation we must now add
a particular solution which we shall write in the form

L e a1 e £ LB
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Let us introduce this in (9). A comparison of the factors of e+t left and
right yields

1C] (— w242 ipew+ w)eib= 2>

0] (— w?-2 ipeotwP)e—ib= 2 -

m

Multiplication and division of these two relations yields

c\2 1
[0]2:(75) (0T~ dptwt

wl—w:—2ipw

20— e,
wyl—w?+2ipw

respectively. Accordingly

c 1
(10) IOIZ E[(woz_w:)z+4pzwa]i’
(11) tan 8= Tt T W —w?

Compare the plot of these two functions of w in Fig. 33 with Figs. 31a, b.

Fig. 33 shows that our formerly infinite resonance maximum has been
depressed to a finite value as a result of the damping (note, by the way,
that the maximum value no
longer occurs at the exact
point w=w,, but rather at
a somewhat smaller w; cf.
problem ITIL.2).

Fig. 33 also demonstrates
that with increasing w, 8
goes from the value 0 at
w=0 to negative .values;
for w=w, it exactly equals

Y
8

&

1 .
— 5, and it approaches —a

a8 w—-—>c0. Thus we have
justified the arbitrary choice
between -+, made earlier
(in Fig. 31), when we were
dealing with the undamped
case. As a matter of fact
we see now that the phase
of the oscillation always lags
behind that of the driving
force. For further examples of forced vibrations see problems II1.3 and I11.4.

<k
o

-
2
-7

T
I
|
|
1
I
]
r

Fic. 33. Amplitude and phase of damped forced
oscillations.
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§ 20. Sympathetic Oscillations

The types of oscillation so far considered have concerned one mass
point. We shall now deal with types of oscillation involving two masses
capable of oscillation, these two masses being weakly coupled to each other.
Sympathetic oscillations have for many years been important in electrie
measurements. There one speaks of a primary and a secondary circuit,
the latter usually being “ inductively ”’ coupled to the former. The primary
circuit is made to oscillate (*“ is excited ), whereupon the secondary circuit
does likewise, and especially strongly so if resonance prevails. Indeed the
““ doubly tuned coupling stage ”’ widely used in radio consists of a primary
circuit and a secondary one tuned to the former. Here we shall of course
restrict ourselves to coupled mechanical oscillations, which have often
been used as models for electrical ones.

A particularly instructive example of sympathetic oscillations is
furnished by the so-called ¢ coupled pendulums.” 1In the case of resonance
these are two equally long and equally heavy pendulums. We may picture
them most simply as oscillating in the same plane; their coupling may be
effected by means of a helical spring as indicated in Fig. 35. If the spring
offers but slight resistance to the relative motion of the two pendulums
we speak of weak coupling; in the case of greater spring tension we speak of
strong coupling. We assume that the coupling of our pendulums is weak.
If the pendulums are not exactly equal in length or in weight, we shall
say that they are ‘““out of tune,” or * detuned.”

We shall first describe the phenomena which are observed in the case
of resonance.

displacement

Fi1a. 34. Coupled pendulums in the case of resonance,

Let the first pendulum be excited, the second one being initially at rest.
In Fig. 34 we have drawn a picture of the resulting oscillations.

The oscillations of each pendulum are modulated. The energy alternates
between one pendulum and the other. When one pendulum oscillates
with maximum amplitude, the other one is at rest.
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If, instead (cf. Fig. 35) both pendulums are set in motion simultaneously
and with equal strength, either in the same direction (Fig. 35, left), or in
opposite directions (Fig. 35, right), no energy is exchanged. These two
oscillatory modes are called the
normal modes of oscillation of our z 7 AL
coupled system of two degrees of
freedom. We have the general
rule that an oscillatory system of
n degrees of freedom has n normal
modes of oscillation.

If, on the other hand, the
pendulums are detuned, an energy
exchange stil] takes place to be sure, but this exchange is of slich a nature that
the initially excited pendulum has a minimum amplitude different from zero.
Only the pendulum initially at rest again reaches the state of rest in the
course of the motion. Thus the “sympathy ” of the two pendulums is
upset by imperfect tuning.

We shall now sketch the theory for complefe resonance, making the
simplest possible assumptions: we neglect all damping, and approximate the
circular trajectories of the bobs by the tangents at their lowest points,
which is permissible for sufficiently small displacements. Let x; be the
amplitude of oscillation of pendulum I, #, that of pendulum II; call & the
““ coupling coefficient,” i.e., the spring tension caused by an elongation of
~ unit length, divided by the mass of one of the pendulums. The simultaneous
differential equations of the problem are

F1a. 35. The two normal modes of oscillation
of coupled pendulums in resonance.

(1) :il_i"w%xl:_k (xl_xz)
.;152+ ngzz - k (1272—- xl).
If we introduce in (1)
(2) 21 =@ — Ty, Zo=T; Ty,
subtraction and addition yield the two equations for the normal modes,
(3) £1+ wgzlz —2kz, or z1+(w(2)+2k) z,=0,
respectively, with the corresponding frequencies

(4) for z,: w:(0’3+21{)*gw0+ ﬁ%;

for z,: w'=w,.
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The general solutions of Egs. (3) are
(5) 2;=a, c08 wi-+b, sin wt;

2y=ay cO8 w't+b, sin w't.

At the moment of excitation t=0 let

(6) Zymiy=0, #,=0, 2,=C,
giving
(7) 2,=29=0, 2z;=2,=0C.
It follows that
(8) by=b,=0, a;=0a,=C,
so that
z;=0cos wt, 2z, =C cos w't.

Finally

Xq= z’;—z‘—v—-C cosw'—;i"t . cos“izif't
) Zy= z’;z’ =—C sinw’z_wt - sin wi;-wt.

According to (4) “—’;—-—w—’g 9% <1 in the case of weak coupling. The first
[

factors of the right members of (9) therefore vary slowly with time; it is
this circumstance which determines the beats in the oscillation illustrated
in Fig. 34.

The theory is not quite so simple if the two pendulums are out of tune,
ie., if I, #1, orfand m; #m,. Letting ¢ be the tension of the spring due to
unit elongation, we now put

g 2_ g ¢ ¢
w?= l—l, w2= l—a, klm ;n—l’ kgﬁ E.
and instead of (1) we obtain the initial equations
(10) 51‘*“”? Ty = —ky (2,— z,)
5&2+w§ Xo=—ky (Xo— x,).

Here again there are two normal modes, which can be obtained by an
extension of the method set forth in (3.24). [In Eq. (1) we were able to
use a more convenient method especially suited to that case; this method
is not applicable in general.] We substitute

(11) xy= At g,= Beill
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and obtain from (10) the two characteristic equations
4 (02— X+ky) =k B
B (w2— X+ky) =k,A.

The so-called secular equation® obtained from (12) is quadratic in A2
since

(12)

B wl—Altk, ks
(13) A~ %y = Wyt — Ak,
so that
(14) {R— (i +k)} {X2— (wi+Ey)} =k, k.

For small k,, k, (14) has the two approximate roots
ki k
it Gao
(15) Al=

‘U§+kz+ F1ks

Wy —wy?

We designate these two roots of the secular equation by w? and w'?; further-
more we generalize the tentative solution (11) in the same manner as was
done in (3.24b), using the principle of superposition of solutions of linear
differential equations. Written in real form the general solution is then
(16) Zy=a cos wt-+b sin wt+a’ cos w't4b" sin w't
Zy=ya co8 wi-+yb sin wi+y'a’ cos w't+y’'b’ sin w't.
Here y and 9’ are the specific values of BfA which arise from (13) for
M= w? and M= w'? respectively.

Let us once again take as the condition of excitation at {=0

2,=0, £,=0, 2,=0, x,=C.
This yields
ya+y'a’=0, yob+y'w'b'=0,

)
wbh4+w't'=0, at+a'=C,
from which
b=b"'=0
and
a= ,?’ C,a=-"_0C
T 7 Y—7

—_—

3 The word originated in the perturbation theory of celestial mechanics.




110 Oscillation Problems I11.20

It we substitute these values in (16), we have

xlz_y,—_,;(y cos wi— vy cos w't)

(18)

Zy= yy’ (cos wi— cos w't).

Y=
In the equation for x, we can perform the trigonometric transformation

used in (9) to obtain

(19) _ 2vyy . w—w -Sinw —{-wt

We see that the second pendulum still comes to rest at the times

w—w .
—2—t=nw,

4

pendulum I ¢

pendufum IT —M%QW%%%—)!’

Fra. 36. Oscillograph of two slightly detuned coupled pendulums,

not so the first pendulum, which [cf. the first Eq. (18) and Fig. 36] retains
a finite amplitude when that of x, is at a maximum. Imperfect tuning results
in an incomplete transfer of energy.

If we desire to apply the foregoing theory to electrical phenomena,
we must extend it to include damping of the pendulums; damping has its
electrical analogue in the Ohmic resistance (our acceleration term corresponds
to the self-induction, our restoring forece to capacitive effects); moreover
the analysis of electrical oscillations in coupled circuits demands that we
introduce * acceleration and velocity coupling > in addition to the “ position
coupling ”’ [k multiplied by - {z,— z;)] which was the only type of coupling
taken into account in our mechanical problem.

In problem IIL5 we shall investigate the motion of an experimentally
convenient arrangement, in which the pendulums are suspended bifilarly
from a flexible wire and oscillate not in the plane of their positions of rest,
but perpendicularly to it.

An interesting arrangement, in which both coupled pendulums are, 80
to speak, realized in the same body, is that of an oscillating helical spring.

4 For details the reader is referred to the Willner-Festschrift, Teubner (1905): Lissajous
Figures and Resonance Effects of Oscillating Helical Springs; Their Use in the
Determination of the Poisson Ratio.

[
£
5
ks
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Such a spring (cf. Fig. 37) is capable not only of an oscillation (y) along
its axis but also of a rotary oscillation () about this axis.
For finite displacements the coupling between these two
motions is produced by the spring itself. For if the spring
is pulled vertically downward, a lateral force is experienced;
the spring seeks to withdraw along the wire-direction in order
to uncoil itself. If, on the other hand, the spring is coiled
up, it will seek to shorten itself along the y-axis. In other
words, if one excites an oscillation in the y-direction, an
x-oscillation is induced, and conversely. (Note: as far as
the elastic stress on the material is concerned, the y-oscil-
lation is one of torsion, the z-oscillation one of deflection.
For details about this consult Vol. II this series.)

By means of the adjustable mass Z, one can bring
the vertical and horizontal oscillations into accurate or Fre. 87. Tor-
approximate resonance. If then one of the two vibrations Sﬂlomf‘l and  do-

. . ection oscilla-
is excited, an exchange of amplitudes of the type of Fig.

tions of a helical

34 or Fig. 36 takes place. spring.
§ 21. The Double Pendulum

As at the beginning of the previous section, we shall first describe the
empirical phenomena involved.

From a heavy pendulum (a chandelier, for instance) we suspend a light
pendulum of about the same period of osciliation. Let us impart a sharp
impulse to the heavy bob; the light bob will be set in vigorous motion,
which suddenly subsides and stays at zero for a short time. At this instant
one perceives that the heavy bob, which had previously remained practically
at rest, now starts oscillating with noticeable amplitude. This oscillation
soon ceases, however, whereupon in its turn the light pendulum again
begins to move with considerable vigor, and so forth.

As mentioned, we demand that the masses of the
two bobs, M and m, be very unequal, but that the

equivalent lengths L, I be approximately the same. We
let

i,

7 —h <L

We shall treat the displacements, X of the heavy ® z
pendulum, = of the light one, as small quantities, so

t ) : .

hafs once agaln we can approximate arcs of circles by Fia. 38. Schematic
their tangents. Consequently we must also keep the arrangement of a
angles ¢ and ¢ (cf. Fig. 38, where i belongs to the relative double pendulum,
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displacement z— X) small. We can therefore put
: X . -X :
smtﬁﬂsﬁmz, sin :,[:.—_-¢=-x—z— and sin (Y—@)=¢p—d= . __%.

cos ¢==cos Y=cos (¢—)=1.

The upper pendulum is acted upon not only by the force of gravity, but also
by the lower pendulum; the string tension® S~mg cos ¢ contributes a
component tangential to the motion of M of amount— mg cos ¢ sin ($— ).
Thus we arrive at the equations of motion

(1)

MX— - M%X+mg(’$‘ _ %)
(2)

mit= —mi—’ (x— X)

or, in more convenient form,
X+ (L+nl-tnd) X—pfs,
(3) .9 g

From now on we shall put L=1 and introduce the abbreviation
g.

@ | =]

Our Egs. (3) then become

X4 oX(l4+-2p) X =pola,
i‘-{-wﬁ = ng.

(5)

These equations of motion state that the upper pendulum is p times
more weakly coupled to the lower one than vice versa.
To integrate () we use a substitution similar to (20.11),

(6) x=AeM; X = BeiXl,
From (5) we have as a result
A(wg—— A2)=Bw(2]

7
) Blwi(14+2p)— X]=Apwl.

’ In the present elementary treatment we have to introduce this tension S as a descrip-
tive auxiliary quantity; later, when we analyse the same problem by means
of the general Lagrange method, this procedure will become superfluous. In order
to determine § we reason as follows: the tension in the suspension of the light
bob is in equilibrium with gravity and inertial force (centrifugal force); the latter
is a small quantity of second order and can therefore be neglected. We then have
S=mg cos Y as stated above,
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If we put the two values of B[4 obtained from these two equations equal,
we arrive at the quadratic equation in A%

(8) (AZ— wg)2—1—2,u. wg(wg—— )\2)=pw$.

Let its two roots be called A?==w? and A*=w’2, Omission of higher powers
of p easily yields their approximate values

(9) z}= wo(L£ 3ud).
Written in real form, the general solution of (5) is then
z=a cos wt-+b sin wi-}-a’ cos w't-+5b’ sin w't,
(19) X = ya cos wt+yb sin wt+y'a’ cos w't4y'd sin w't.

As in § 20, y and 9" are here the values of B4 which result from (7) for
A= % and A= w'? respectively, viz.,

(11) y=—ut, o'=+ut and hence o' —y==2ut.
Let the excitation of the system at {=0 be given by

(12) 2=0, #=0, X=0, X=C.
It follows that

ata'=0})
yaty'a’—=0 }a—a ={.

wh+w'd'=01], ¢ | po _C .
yob4y'@'d'=C [ wly—=y)' T &{(¥=7)

Thus we obtain the final solutions

C (sin wt sin m’t)
x

Try—v\ e o

X= 7—__-;)-,-,(asm wi— 2,80 w t).
Let us pass from these to the velocities & and X , ﬁa,kjng (11) into account.
We end up with

z= %(cos w’t— cos wt),
1
(14)
X= g(cos w't-+cos wt).

Given the same phase, the velocity of the heavy upper bob is hence
#¥ times smaller than that of the light lower one ; notice also that (14)
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satisfies our initial conditions (12). The same can be said about the dis-
placements themselves. Like the velocities, these are subject to beats
because of the closeness of the values of w and «’. This modulation can
be shown explicitly by writing the equations (13) and (14) in a form
resembling Eq. {(20.9).

We conclude the chapter with a problem which also pertains to the
class of coupled oscillations and leads to oscillations very similar to the
ones treated above. We shall, however, avail ourselves of a simpler
mathematical method resembling that of the forced® undamped oscillations
of § 19, so that we have to cope with the integration of only one differential
equation rather than with that of a system of two simultaneous ones.

Let us suspend our pocket wabch from a smooth nail, in such a way
that the watch hangs completely free and friction is reduced to a minimum.
By means of gentle contact with our fingers or a piece of cloth we bring
the watch Into a state of complete rest. When released, the timepiece at
once begins to move, performing increasing oscillations about the vertical
rest position. These oscillations reach a maximum, then gradually decrease
once more to zero, after which the process repeats itself.

In these oscillations of the watch we are evidently confronted with
a motion reacting against the rhythm of the balance wheel, i.e., a manifesta-
tion of the principle of conservation of angular momentum. The fluctuation
of the oscillation amplitude, on the other hand, is caused by interference
between the free pendulum oscillations of the watch in the gravitational
field and the forced oscillations excited by the balance wheel.

We shall follow § 13, subsec. 2 in our notation. Accordingly we let
M be the angular momentum of the total motion of the system. We decom-

pose it into that of the pendulum motion (p) and that of the balance wheel
oscillations (b),

(15) M—M,+M,.

M,, is calculated about the point of suspension O (nail), M, about the center
B of the balance wheel. The latter is permitted because a pure angular
momentum (i.e., one caused by a motion in which the center of mass of the
system remains fixed) can, just like a force couple (cf. p. 128), be shifted

6 We can say quite generally that the excitation of forced oscillations in a system by
means of an external force is equivalent to coupling with a second system on which
the first one does not react. In the case about to be described it is certainly
true that the reaction of the pendulum oscillations on the balance wheel is vanish-
ingly small.




111.21 The Double Pendulum 115

at will in its plane?; indeed, due to the symmetry of the balance wheel
about B, the inertial action of the balance consists of a pure moment of
momentum. Let « be the circular frequency of the balance wheel; it is
determined by the stiffness of the balance spring. Let w, be the undis-
turbed, i.e., proper circular frequency of the pendulum oscillations. Accord-
ing to (11.6) and (16.4) we put

(16) M, =14, I'=m,a?;

m, is the total mass of the watch, a its radius of gyration measured from O.
We postulate a sinusoidal balance wheel oscillation which we shall there-
fore describe by é,=a sin wt, B being the vertex of angle ¢,. The angular
momentum of the balance wheel is then

(17) My=mywb?a cos wi,

where my, is the mass of the balance wheel, b its radius of gyration measured
from B.

As in the case of the compound pendulum [Eq. (16.1} ] the moment
of the external force is

(18) L:'—'mp g8¢:

where we have, as usual, made the approximation for small ¢. Here s is
the distance of the center of gravity of the watch from O, and ¢ the angle
formed at O by the vertical and a line through the center of gravity. We
now apply (13.9), use therein the values given by (15), (16), (17), and (18),
and obtain the equation of motion

(19) QS—I— ‘i—icﬁ——— gz (2)20tw2 sin wt

for our system.

This equation represents the type of oscillation which was treated in
§19 as undamped forced oscillation. Again we put

gs__ 2
at %o

? This is a direct consequence of the fact that the angular momentum of a system
about a given axis can be decomposed into the sum of the angular momentum
of the system about a parallel axis through its mass center and the angular
momentum of the mass center (containing the total mass of the system) about
the given axis. In our case the latter term vanishes since the angular momentum

of the mass center of the balance wheel due to the oscillation of the watch as a
whole was included in Mypend.
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where w, is, we recall, the proper frequency of the pendulum motion; let
us moreover abbreviate

b\2
c= %(5) rxw2<1.
Equation (19) becomes

(20) $+wg¢=c sin wi.
The solution satisfying the initial conditions ¢=0, q£:0 at £=0 is

(21) $— wozf_wz(sin wt— (-sin wot).
The constant ¢ is so small (factor my/m,) that the oscillation is of visible
magnitude only when the relation w,—w is approximated, ie., when
approximate resonance exists between the external pendulum oscillations
and the internal oscillations of the balance wheel. Surprisingly it turns
out that this resonance is more or less well realized in pocket watches
of not too small a size (ladies’ watches are unsuitable for our purposes).
Eq. (21) further shows that amplitude modulation goes hand in hand
with the approach to resonance wy — w. The period 7' of the beats is
determined by the requirement

(22) T = w,T £2m,
and has therefore the value

2r
| — ey

(22a) T—

It can be determined very accurately by counting the number of pendulum
oscillations between two nodes of the beats, and furnishes therefore a 4
convenient and precise measure of the degree of resonance. We can refer
back to Fig. 32 which, as pointed out, represents the same differential
equation as (20); we must, however, bear in mind that in the diagram we
postulated complete resonance, i.e., T'= 0.

If one leaves the watch to itself for some time, one observes that the
beats have ceased. The reason for this is evidently friction (at the point
of suspension and in the air), which we have so far neglected. This
friction damps the contribution of the free pendulum oscillations to the
motion of the watch, leaving only the forced oscillations due to the motion of
the balance wheel, the latter contribution (cf. Fig. 33, for instance) being
somewhat reduced in amplitude due to friction. We can reason as follows:
initially the forced oscillation is present in its full amount, and the free
pendulum oscillation is excited to such a degree that at t=0 it just cancels

the forced one —in agreement with the initial conditions ﬁ=<;:$=0.
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Indeed the initially motionless state of the watch can be interpreted as
being caused by an impulse exactly cancelling the balance wheel oscillation.
The effect of this impulse is gradually used up by friction, so that only
the forced oscillation due to the balance wheel remains,

The example of the watch appeared in the literature for the first time in
the  Elektrotechnische Zeitschrift >’ of the year 1904, in connection with
the phenomenon of ““hunting ” of synchronous machinery, then timely
and surprising. Two synchronous alternators feeding the same power
line and connected in parallel show undesirable fluctuations in their motions
and their currents when resonance occurs. They provide a greatly magnified
picture of the beats of our watch and of the coupling and resonance
phenomena occurring in the coupled oscillations that we have just

analyzed.



CHAPTER IV
THE RIGID BODY

§ 22. Kinematics of Rigid Bodies

At the beginning of § 7 we saw that a rigid body is endowed with six
degrees of freedom; these we shall subdivide into three of translation and
three of rotation.

Let us consider the body in two different positions, the *“ initial position
and the * final position.” We pick out an arbitrary point of the body as
“ point of reference ” O, and describe a sphere of reference (say of unit
radius) about it. On this sphere we mark two points 4 and B. Once
we have guided the three points OAB from their initial positions to their
final ones, all other points of the rigid body have similarly reached their
destinations.

First we take the point O from its initial position O, to its final position O,.
Lot this be achieved by means of a parallel displacement or translation
in which each point of the body is subjected to the same rectilinear displace-
ment O; - 0, We have thus described the three degrees of freedom
of translation.

The sphere K, described about O, is now in coincidence with the
corresponding sphere K, described about O,. In general this is not true
of the position of the points 4, B, which we designate by A,, By on K,
and A,, Byon K,. We shall show that there is one definite rotation about the
point O;=0, which will take points A4,, B; over into 4,, B, Axis and
angle of this rotation define the three degrees of freedom of rotation to
e added to those of translation, _ '

In order to construct the axis of rotation, i.e., the point £ at which the
axis cuts the unit sphere, we connect 4, to A, and B, to B, by means of
arcs of great circles. At the centers A’ and B’ of these arcs we erect their
perpendicular bisectors whose intersection is the point £ in question.
The angle of rotation, which we shall also call £, is

(l) Q“_‘l {AIQAgg {BIQBT

The equality of these two angles results from the congruence of the shaded
spherical triangles 4,02B,; and 4,2B, of Fig. 39, whose three corresponding
sides are equal to each other. It follows that the two angles designated by
y in Fig. 39 are equal. If we subtract one or the other of these angles

118
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from the total angle 4, 2B, we obtain the right or middle member of Eq. (1).
This equation evidently states that the same rotation 2 not only takes
point A, over into 4,, but also point B, into B,.

So far the magnitude and
direction of the translation are
still arbitrary* within wide limits,
for we have free choice over the
reference point 0. The magni-
tude and axis of the rotation, on
the other hand, are independent
of the choice of the reference
point. For let us substitute for
O a new reference point O’. The
difference between the transla-
tions associated with 0" and O for
a given total displacement of the
rigid body is again a translation.
This latter translation, however, Fic. 39. Construction of the pomt
does not affect the positions of the determining the axis of rotation for a

. rigid body revolving about a fixed point
points 4, B on the spheres K, and 0. This diagram also suggests how the

K, 1t follows that the construc- resultant of two finite rotations can be
tion of Fig. 39 carries over un- found.

changed to the present case and

yields not only the same angle of rotation £ as previously, but also an axis
of rotation passing through the point of reference O’ and parallel to our
former axis.

Of much greater importance than finite displacements of the rigid
body are its infinitesimal displacements which succeed each other con-
tinuously to result in a finite motion. We shall therefore assume that now
the magnitude 0,0, of the translation and the angle Q of rotation are
arbitrarily small. Let us divide them by the correspondingly small interval
of time 4t. We then obtain the velocity u of translation and the angular
velocity w of rotation,

—_
(2) u= Oél](t)z’ ) =

Fe)

AS_ before, the angular velocity is independent of the choice of reference
pomnt O, whereas u depends on this choice. The heavy type indicates that

! In the supplement to § 23 we shall see that we can, in particular, make the direction

Of: the translation parallel to the axis of rotation. We then speak of a ‘‘ screw
displacement.”
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o 18 to be regarded as a vector which expresses not only the magnitude,
but also the axial direction of rotation of the angular velocity.

We can easily show that o does indeed possess vector character. In
Fig. 15 and Eq. (13.4), while discussing virtual rotations, we derived the
relation

(3) ds =8 Xr.

If we now pass from the virtual rotation 8¢ to the angular velocity mz%’
and from the virtual displacement 8s caused by the rotation to the velocity

W:E;—?’ we obtain from (3) that

(4) W=wXT.

As in Fig. 15, r is here the radius vector from the point of reference O
located on the axis of rotation to the point P whose velocity w is to be
determined.

Consider now the total effect of two successive infinitesimal rotations
odt and w,dt on the motion of the point P of the rigid body, reference
point O being common to both axes w, and w,. We have

(4a) W= XTI, W= XT, W1+ W,=(0;-+0y) XT.

In the last of these equations the left member is the velocity w, resulting
from w; and w,. A comparison with (4) shows that

(5) 0= 011 @y

is likewise the resultant angular velocity, equivalent to the two rotations
©,dt and w,dt in its effect on the rigid body. We conclude that angular
velocities add like vectors. Asin the case of vectors their order in addition is
immaterial, i.e., their addition 1s commutative, for

(6) 01+ 0=y +wy.

Neither of these two laws is valid for finite rotations. Their composition
does not follow the simple rules of vector algebra, but those of the algebra
of quaternions invented by Hamilton. Moreover the effect of two finite
rotations depends on their order; two such rotations do not commute.

At this point it is convenient to discuss the difference between polar
and axial vectors.

Ixamples of polar vectors are velocity, acceleration, force, radius vector,
etc. They can be represented by directed segments provided with an
arrow head. In a rotation of the system of coordinates their rectangular
components transform like the coordinates themselves, i.e., according to
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the scheme of orthogonal transformations with determinant +1. In an
inversion of the coordinate system through the origin, in which z, y, z are
replaced by —%, —¥ —F respectively so that the transformation has
Jeterminant — 1, the components of polar vectors change sign.

Angular velocity, angular acceleration, torque and angular momentum
are examples of axial vectors. In accordance with their nature they are
represented by an axis on which sense and magnitude of rotation are
indicated (e.g., by a curved arrow and a number). If, instead, we represent
them by means of an arrow of corresponding magnitude laid off on the axis,
we must make some arbitrary agreement about the direction of this arrow,
such as the rule of the right-handed screw. In a pure rotation of the
coordinate system the rectangular components of axial vectors transform
like the components of their associated arrows, i.e., orthogonally ; in an
inversion of the coordinates through the origin, however, these rectangular
components do not change sign. In such a transformation the rule of the
right-handed screw must be replaced by that of the left-handed screw,
in agreement with the fact that an inversion through the origin takes a righs-
handed coordinate system over into a left-handed one.

The vector product of two polar vectors is an axial vector (e.g., the
moment of a force). The vector product of an axial and a polar vector
is a polar vector [e.g., the velocity w in Eq. (4)]. The reader may easily
convince himself of this by checking the behavior of these products under
inversion of coordinates.?

After this digression we return to the kinematics of the rigid body.
The motion of each one of its points is composed of the velocity u of Eq. (2)
connected with translation and the velocity w in Eq. (4) connected with

rotation. The velocity v of an arbitrary point of the rigid body is hence
given by

(7) V=u-}eXTr.
The choice of the reference point O is completely up to us; for it we have
(7a)

v=u.

FOI" many purposes it is advantageous to put O at the mass center G.
This becomes evident if, for instance, we wish to calculate the kinetic

? From now on we shall simply talk about the torque L, the angular velocity @,
where the reader should bear in mind that we mean by this the axial vectors
representing the torque and the angular velocity respectively. When, on the
other hand, we speak of the plane of the torque and the plane of the angular

velocity, we mean, of course, the planes perpendicular to the axial vectors L
and ¢ respectively.
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energy of the body,

(8) T— _[ o e,

To this end we form, with the help of (7),
(8a) =1t (0Xr)2+2u, (0 Xr)
and accordingly break up 7' into three parts,

(9) T:Ttransl+Trot+Tm’

where T’ is a “mixed” energy which is determined by the translation and
the rotation combined.
Since u has the same value for all points dm, we evidently have
u?

(10) Topuns= 5 | dm= 02,

In order to calculate 7T, we perform the transformation ,

(11) Tm=fu.mxrdm:u.mxfrdm:mu.me,

where R is the directed segment from O to the mass center G,

(11a) R=_ f rdm

as in Eq. (13.3b). If now we let O coincide with @, we have R=0 and,
from (11),

(11b) T 0.

The kinetic energy 7' then becomes simply the sum of Ty, and Ty
Notice, in passing, that if the body rotates about a fixed point and if one
chooses this fixed point as reference point O, not only 7', but also T ranal
vanishes (in both cases because u==0), so that

(11c) T =T,

We shall now focus our attention on the rotational contribution to
the kinetic energy. If we square the components of @ Xr, we obtain from
the middle term of the right member of (8a)

(12) 2T =wl[r+ad dmt o [-+at)dm+ o[ (e 4y dm

-2 wywzfyzdmw— 2wzwxfzxdm— wawyfxydm.

el
..
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With the notation
L= [@2+2)dm . ..

12a)
( I_,W=J.xydm .

this yields

(12b) 2Trot: Imwwg+1yng+1zzwgw 2Iyzwywz"" 2szwzwx"" 2Ia:y‘-”a:“-’y-
According to the definition introduced in (11 3),1,, is the moment of inertia
of the mass distribution about the x-axis; a corresponding statement holds
for I, and I, Weshalleall I, I ., I, the products of tnertia (the name
« centrifugal moments ’’ is sometimes used synonymously). We can also

abbreviate I, . . . without ambiguity to I, .
In accordance with {11.5) we put the left member of (12) equal to Tw?

and with the abbreviations

Wr wydﬁ’ Wz

13) s, W, Yy
obtain
(13a) I=I_02+1, B+1, y*—21, By—21, yo— 21,,08.

«, B, y are the direction cosines of the vector » whose axis is arbitrarily
located in the rigid body. It follows from (13a) that the moment of inertia
about any axis is completely determined once the six magnitudes I, are given.

A sextet of magnitudes of the type of our I, is called a tensor, or, more
precisely, a symmetrical tensor. The name originated in the theory of
elasticity where stress and strain tensors play a central role. In general
& tensor is very aptly written as a square scheme, which in our case would be

Imx “Imy —Ia:z
(13b) L= —1ys 1, -1,
“sz '—Izy Izz

where I,=1,,.

From an elementary viewpoint the mathematics of tensors is less
concrete and easily intelligible than that of vectors. Whereas a vector is
Tepresented by a line segment, we must resort to a surface of second degree
for the geometrical representation of a tensor. In our case this *‘ tensor
surface ”* is obtained as follows: we put

(14) ¢

o= g! B: g’ '}}: 5"

W :
here £, 4, [ are interpreted as Cartesian coordinates, hence p=(£--n2+41%)}
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as radius vector from the point 0. We now set p equal to I}, so that
along every axis through O we lay off, not I, but rather the reciprocal
of It (else we should not obtain & surface of second degree). In this manner
we obtain from (13a)

(15) V=1, 824 T 2+ 1,02~ 21t — 21, L6 21, &,

Apart from possible degeneracies this is the equation of an ellipsoid, since
for a finite mass distribution I is, in general, greater than zero. The surface
represented by (15) is called the momental ellipsoid.

If one transforms the coordinates so that they coincide with the prineipal
axes of the ellipsoid, one obtains an equation of the form

(15a) 1=1,¢,2 4162+ 1647,

where I,, I,, I, are the three principal moments of inertia. The products
of inertia vanish for the principal axes, which can be regarded as a definition
of the latter. The tensor scheme (13b) reduces to diagonal form. When
the tensor is described in a system of coordinates different from that of
the principal axes one must mentally add the three direction parameters
of the principal axes; thus we are again lead to the six magnitudes characteri-
zing a symmetrical tensor.

/ N\
<Ry :
\-rr e e .

v'/ a) L__‘)"’

b) . c)
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hY

Fie., 40a—c. {a) Momental ellipsoid of the toy top. (b) Momental ellipsoid of the
flywheel top. (¢) An example of a spherical top.

Every plane of symmetry of the mass distribution is of course also
a plane of symmetry of the momental ellipsoid. A mass distribution with
rotational symmetry has a momental ellipsoid of revolution, i.e., in addition
to the principal axis along the * axis of figure ” it possesses infinitely many
other “‘ equatorial > principal axes. As examples we may mention two
types of tops; one is of the conical type used as toy, the other has the
shape of a flywheel and is usually employed for demonstration purposes
(Figs. 40a and b). 1In the first type the moment of inertia about the axis
of the body is a minimum, so that the corresponding principal axis is longer
than the equatorial ones (by virtue of the relation p=1I"%); we have a prolate
spheroid. In the second case the moment of inertia about the axis of
figure is a maximum, hence the corresponding principal axis is, for the
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same reasomn, smaller than the equatorial ones; the result is an oblate
spheroid.

" Incidentally a momental ellipsoid becomes one of revolution not only for
mass distributions with rotational symmetry, but also whenever more than
two planes of symmetry pass through an axis, as for example in the
case of a square or hexagonal prism.

Qimilarly the ellipsoid degenerates into a sphere not only in the case of a
spherically symmetrical distribution, but also in cases such as that
of a cubical distribution, for instance, because here there exist more
planes of symmetry than are compatible with the ellipsoidal shape of the
tensor surface. In such a case we speak of a “spherical top.” In a
spherical top (cf. Fig. 40c) any axis is a principal axis.

§ 23. Statics of Rigid Bodies

This subject forms the theoretical basis for the whole field of structural
mechanics dealing with such topics as the construction of bridges, trusses,
arches, ete., and for this reason it is treated with the greatest detail in the
texts of mechanical engineering, both analytically and graphically. Here
we shall restrict ourselves to the general features of the subject.

(1) The Conditions of Equilibrium

These, like all questions of equilibrium, are governed by the principle
of virtual work. Since this principle can be regarded as the special case of
d’Alembert’s principle in which the inertial forces vanish, our present
analysis can be directly modeled after that of the principles of linear and
angular momentum of § 13. Indeed the virtual displacements (translation
and rotation) used there are evidently compatible with the internal connec-
tions of the rigid body and correspond to the two component parts of the
general motion of a rigid body considered in the preceding section.

By deleting the inertial forces in Eqgs. (13.3) and (13.9), we obtain the
general conditions of equilibrium of a rigid body,

(1) > F=0, > L;=0.

:l:he F, are external forces acting at arbitrary points P, of the rigid body.
The first Eq. (1) asks us to lay off the force vectors end to end in arbitrary
order and with no regard to their points of application, and to examine
the resulting force polygon. According to Eq. (1) for equilibrium the
polygon of SJorces must be closed.

tfhe Lj are the moments of the F, about a reference point O whose
choice is arbitrary but which must be the same for all the F,. The second
Eq. (1) asks us to replace these L, by their (axial) vector representations
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(cf. p. 37) and to examine the polygon of torques arising when all these
vectors are added vectorially. According to the second Eq. (1) the torgue
polygon must also be closed for equilibrium.

In analogy to Egs. (13.12) and (13.13) we can pass from the two vector

equations (1) to the following six component equations:

sz:ZYkZZZk=0
Z(ykzk" 2k Yk):Z(szk— xkzk):E(xk Y, — v, Xz)=0.

These represent the projections of the vector equations (1) on the coordinate
axes; the x,, yy, 2, are the coordinates of the points of application, measured
from O as origin.

(2)

(2) Equipollence; the Reduction of Force Systems

If the external forces (or torques) are not in equilibrium, we can ask
whether there exists a single force (or single torque) of such properties
that under its action alone the rigid body moves in the same way as it
would under the action of the given system
of forces (or torques).

Posing this question is, among other
things, useful (even though in general not
sufficient) for the determination of the forces
which are exerted on a rigid body by its
supports if the rigid body is acted on by a

system of forces which themselves are not L - i onstruction of the

sufficient to bring about a state of equili-  regultant force for an “open”
brium. polygon of forces.

We obtain the answer by drawing the
closing segment in the now ‘‘open’ polygon F, F,, ... F,, once in the

direction in which the polygon is traced (F,,) and once (cf. Fig. 41) in the
opposite direction (F,, resultant force). Nothing is changed thereby. We

have now a closed force polygon Fy, ... F,.;, and a single force F,, which,
taken together, are equipollent to the *“ open > polygon of forces Fy, . .. F,.
The forces F,,...F ., are, however, in equilibrium and can therefore be

left out, so that the single force F, is equipollent to the given system of
forces F,, ... F . Mathematically,

n
(3) F,=>F
k=1

The same process of reasoning can be carried out with an “open”
torque polygon. One thereby obtains a resultant force moment L, which

e
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is equipollent t0 the given system of moments L,, L,, ... L,, ie.,
i

(4) er ZLk.
k=1

Let us mention in passing that there is nothing to stop us from making
the single force F, act ab the same point O which serves as reference point
in the calculation of moments L;. This choice is indicated in Fig. 41.

(3) Change of Reference Point

Eq. (3) immediately shows that F, is independent of the choice of reference
point O. If F, is the resultant single forco associated with a different
reference point O, we therefore have

(5) Fr' =F r
From Eq. (4), on the other hand, we have with corresponding meaning of L,

n
(6) L;=>L, with L,=r,xF,,
k=1

where r, is the radius vector from O’ to the point of application P;, of F.
Let a be the vector distance from O’ to O. Then

(631) r;cﬂa+rk, L;GzaXFk—Frkka:aka»}-Lk
Therefore
, i) n n
(6b) L =>axF+>L;=axyF,+L,.
k=1 k=1 k=1

But in view of (3)

ax
k

szaXFr.

n
=1

Thus we have
) L =L, +axF,.

(4) Comparison of Kinematics and Statics

As remarked in connection with Eq. (22.2), in kinematics « is independent

22 .the choice of reference point, whereas u depends on that choice. We
1te

(8) :
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and, from (22.7), with v=u’and r=a,
(9) u'=ulowxa.

This equation has the same structure as the preceding Eq. (7) provided we
disregard the sequence of the factors in the corresponding rector products.
If we also take into consideration Eqgs. (5) and (8), we arriveat a remarkable
reciprocity between statics and kinematics which can be expressed by the
scheme below:

F, Ly
N
N
/N
u W
N
/ N
dependent on independent of

reference point

This crosswise reciprocity holds as well between the concepts of force couple
and rotational couple which we shall now take up.

The force couple (or *‘ couple,” for short) is a basic element in elementary
statics. As is well known, a couple consists of two parallel and opposite
forces of equal magnitude, +F, whose lines of action are a finite distance,
say [, apart. If we carry out the reduction of such a couple in the sense
of subsec. 2, we obtain

- —
(10) F,—0, L,=L, |L|=|F|1,

r

—_—
where one should think of the vector L as directed normal to the plane of

the two forces. Whereas, however, the former L, was, so tospeak, attached
—_—
to the reference point O, our present L is the same for all reference points

and completely free to move in space; i.e., two given ceuples can be added
vectorially to yield a third couple ; two couples of equal and opposite
moments located in parallel planes cancel, ete.

Let us follow up the crosswise reciprocity indicated by our scheme
by defining a rotational couple. By a rotational couple we understand
two equal and opposite rotational velocities -, whose axes are parallel
to each other and a distance I apart. According to the rule of addition
(22.5), the reduction of a rotational couple yields a resultant rotational
velocity »,=0. OQur rotational couple generates then a pure translation

perpendicular to the plane of the two axes of rotation. The magni-
—

tude of the velocity of translation is easily found te¢ be [u|=wl. The
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analogy to Egs. (10) in the sense of our reciprocity scheme is therefore
complete. Whereas our former u depended on the choice of the reference

oint O, the w equivalent to a rotational couple is independent of O, and can
be translated parallel to itself in space in any manner whatever. From
this it follows that two arbitrarily located rotational couples add vectorially

—>
just like their velocities of translation u; two rotational couples of equal
and opposite moment +wl located in parallel planes cancel, etc.

SUPPLEMENT: WRENCHES AND SCREW DISPLACEMENTS

From (7) we see that L, depends on the reference point. We are there-
fore tempted to choose this point in such a way that L, and F, become
parallel. We then obtain an especially simple picture of our system of forces
called a wrench, i.e., a single force and a moment acting about this force or,
equivalently, a couple located in a plane perpendicular to the force. If our
initial reference point is O, the position of O’ required for a wrench is obtained
as follows: in Eq. (7) we decompose L, into L, parallel to F, and L, per-
pendicular to it and determine a from the equation

(11) L,=—aXxF,.
From (5) and (7) we then have for the reference point 0,
F=F, L—L,|F,

as demanded by the definition of a wrench. Eg. (11) states that for this
purpose the reference point O must be displaced a certain distance

normal to ¥, and L,,.

A line of reasoning exactly reciprocal in the sense of the preceding
discussion leads to the screw displacement. With Eq. (9) as starting point
we decompose u into u,, parallel to o and u, perpendicular to it. The
displacement a of the reference point required for a screw is determined
by the equation

(12) U =—wXa.

b
From (8) and (9) we then obtain for the reference point 0’,
(13) o=, W=, || e,

which in fact represents a screw displacement. Eq. (12) states that the

reference point O must here be displaced by a certain distance normal
10 w and u,,.
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Attractive as the concept of the wrench and the screw displacement,
may be, it is of no great practical value in the treatment of specific problemg
involving rotation. For this reason mention of them has been relegated
to a supplement.

§ 24. Linear and Angular Momentum of a Rigid Body.
Their Connection with Linear and Angular Velocity

Let us imagine that a momentum of translation (linear momentum,
impulsive force) and a momentum of rotation (moment of momentum,
impulsive torque) have been imparted to a rigid body. Let the first one
of these be designated by the letter p, the latter by M.

p is calculated as a sum over all linear momenta dp=v dm, l.e.,

(1) p= [ dp—[ vim. .
With the help of Eq. (22.7) we get

pzufdm-i—mx frdm
or, with introduction of the radius vector R from O to the center of mass,
cf. (22.11a),
(2) p=mu-+mo XR.

In particular, if we choose O=@, we have R=0 and ey

(3) p=mu.

The angular momentum M of the rigid body, on the other hand, is
composed of the moments of all the elements of linear momentum taken
about the common reference point 0. We therefore have

(4) Mﬂfrxdpzfdm(rxv),

from which, because of (22.7) and (22.11a),

(5) M=fdm (rxu)—}—fdmrx(mxr)=meu+fdm rX(eoXr).

The first term on the right vanishes for O=G as well as for u=0, so that
in both these cases

(6) szdm rX(wXr).

In order to evaluate this integral we remind the reader of the vector
rule for the triple cross-product, valid for any three vectors A, B, G,

(7) Ax(BxC)=B(A*C)—C(A - B).
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It follows that

rX(Xr)=wr?—r(we-r)
and therefore, taking the z-component as example,
Mx:f[rx(mxr)]mdm
(8)
- wxf (22t y2+2¥)dm—- w, f ?dm— w, [ zydm— w, f xzdm.

By introducing the moments and products of inertia from (22.12a), we can
then write (6) in the form

M:uz Immwx_Ixywy"Ixzwz
(9) My= —Iyxwx+fyywy— Iyzwz
M,=—1, w,— Izywy A1, w,.

We have thus arrived at a linear relation between the dynamic vector M
and the kinematic vector w; this relation is achieved by means of the
tensor I of Eq. (22.13b). We therefore say that M is a “linear vector
function ”’ of . Such linear vector functions play an important role in all
aspects of the tensor calculus, especially in the theory of elasticity (cf. Vol. 11,
this series).

Egs. (9) can be put into instructive form if we make use of expression
(22.12b) for the kinetic energy of rotation. For then we simply have

( 10) M?: . 8T'rot

' p=2 .
Sy Y %

Notice, moreover, that this expression is valid not only for the case O=@G
or u=0 presupposed in (9), but also for u#0 and arbitrary position of O.
For in the more general case one need only complete expression (22.12b)
for 7', by adding expression (22.11) for 7', so that the term

er
%? =m(R xu);

will be added on the right of Eq. (10). But this is the same term which
appears on the right side of Eq. (5) for M whenever O and @ do not coincide.
Since, finally, the total kinetic energy T differs from T ,+T, only by

the term T ans iIndependent of o [ef. (22.9) and (22.10) ], we can generalize
(10) in the form

(10&) Mi= gﬁ%, i=z,y, 2

valid for arbitrary position of O.
What has been said of the angular momentum M is also valid for the
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linear momentum p. Here we consider at once the general case O3 @
and from Egs. (22.9), (22.10) and (22.11) form

oT
which is in agreement with Eq. (2) for p. The equation complementary
to (10a) is therefore

o7
(11) p’i:%’ t—=x, Y, 2.

Eqgs. (10a) and (11} are special cases of a much more general rela-
tionship connecting momentum and velocity coordinates of an arbitrary
mechanical system. The proof of this must be postponed to Chapter VI,
§ 36. Here we shall only concern ourselves with the geometrical meaning
of Eq. (10), which leads us to the celebrated geometrical construction of
Poinsot. The Poinsot method tells us how to find the position of the axis
of angular momentum M with reference to a given axis of rotation. The
same can be said of this method as of the foregoing equations, namely,
that it is not restricted to the case of the rigid body, but is applicable
whenever one deals with a symmetric tensor ; one represents this tensor
by means of a tensor surface of second degree, and asks for the linear vector
function given by means of this tensor.

The Poinsot construction runs as follows: from the center O of the
momental ellipsoid we lay off the angular velocity vector o and construct
the tangent plane to the ellipsoid at the point where  intersects it. The
perpendicular from O to this tangent plane gives the direction of M. As
proof we need merely recall that for an arbitrary surface f(£,, {)=const.,
the direction cosines of the normal to the tangent plane are proportional to

of  of, o,
(12) 5" o’ o

In our case f(£,7,()=-const. is the equation (22.15) of the momental
ellipsoid and its derivatives with respect to ¢, m, { are indeed proportional
to the components of M of Eq. (9).

We may also interpret the Poinsot construction as the direct geometrical
expression of our Eq. (10), for the momental ellipsoid is essentially identical
to the surface 7' = const.

Our Figs. 42a, b represent the case of the symmetrical momental
ellipsoid, where », M and the axis of symmetry (“axis of figure ?y f are
coplanar ; so that the tangent plane can be represented as the tangent
to the cross-section of the ellipse in this plane. In the prolate ellipsoid of
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revolution (€., spheroid), Fig. 42b, M and f, the axis, lie on opposite
sides of @ ; 1N the oblate spheroid of Fig. 42a, M lies between f and o.
The case of the ellipsoid with three
axes presents a more difficult i
In conclusion we emphasize that T / w
the relations discussed in this section
are basically nothing but expressions o
of the Newtonian definition, ‘ the
quantity of motion is the measure of a) R
the same, arising from the velocity
and the quantity of matter con- Fic. 42. Poinsot construction giving
junetly,” extended to the rigid body. the relative position of angular velocity

. w and angular momentum M for the
The reason why our present relations

] two cases where the momental ellipsoid
are so much more involved than the degenerates into &) an oblate spheroid,

one between momentur and velocity b) a prolate spheroid.
of a single particle is that in particle
mechanics the  quantity of matter,” i.e., the mass, is a scalar, whereas

in the case of the rigid body the moment of inertia that takes its place is
a tensor.

— —
unequa] £ ow M

graphical problem.

§ 25. Dynamics of a Rigid Body.
Survey of its Forms of Motion

Let us first consider the rigid body moving freely in space. As reference
point we choose its center of mass, and reduce all the forces acting on
the body to forces acting on this point, in agreement with the prescription of
§23. We need then only deal with a single resultant force F and a resultant
torque L. The equations of motion are the equations of momentum and of
moment of momentum of § 13 ; they read

) p=F,
(2) M=L.

Since the rigid body possesses but six degrees of freedom, these two vector
equations suffice for the complete description of its state of motion.

Egs. (1) and (2) can be treated separately whenever F is independent
of the angular velocity and L independent of the translational velocity.
In ballistics, for instance, this is not the case. If it is the case, (1) becomes
& I?I‘Oblem of pure particle mechanics, (2) a problem of rotation about a fixed
point or, as we shall say for brevity, a “ problem of the spinning top.”

At this point we shall be interested principally in the latter. With
the choice of reference point made above, we can disregard the force of
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gravity since it has no moment about the mass center. If, furthermore,
we neglect air resistance, friction and the like, we are confronted with the
problem of the spinning top under no forces. Thus the gyroscope in a
Cardan suspension (cf. Fig. 47) is a top under no forces provided we can
neglect the mass of the gimbals in comparison with that of the flywheel,
which is approximately valid in the usual constructions. Otherwise we
would be confronted with a considerably more involved mathematical
problem.

We shall also deal with rotation about a fixed point other than
the mass center. As remarked on p. 122, it is then advisable to take this
fixed point as reference point O and introduce the gravitational moment L
acting about it. In that case we speak of a keavy fop. Subsecs. 4 and 5
are devoted to its discussion.

We shall postpone the complete analytical treatment of the top under
no forces until the following section, where we shall become acquainted
with the tool provided by Euler’s equations. The complete treatment of the
heavy top — to the extent to which it can be carried through at all —must be
postponed even further, namely to § 35. There we shall have at our command
the yet more powerful method of the generalized Lagrange equations.

For the top under no forces Eq. (2) yields M=0. This can be integrated
at once to yield

(3) M = const.

The angular momentum of a top under no forces is constant in magniude
and spatial direction. This statement completely parallels Galileo’s law
of inertia, but in general does not lead to an expression for velocity and
position in space which is as simple as in the other case.

(1) The Spherical Top Under No Forces

Only in the case of a spherical momental ellipsoid do we have M= Ja,
from which M=-const. leads to w=-constant. The axis of rotation is in
permanent coincidence with the fixed axis of angular momentum. Each
point of the body, no matter what the external shape of the same (cf. Fig. 40c,
for instance), describes a circle about this axis with constant velocity.

(2) The Symmetrical Top Under No Forces

Here a simple rotational motion occurs only if the direction of M
coincides with one of the principal axes, that is, either with the axis of
the body or an equatorial axis. The general form of motion of the sym-
metrical top under no forces is the so-called regular precession.
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We explain this form of motion with the aid of Fig. 43. We have
drawn the axis of the angular momentum, which is fixed in space, vertically
upward; let M be the point at which it intersects a unit sphere described
about the center of the momental ellipsoid. Call B and F the points of
intersection of this sphere and the axes of rotation and of symmetry at an
arbitrary instant. Since by the Poinsot method these three axes lie in a
neridian plane through F, the three points M, R and F are located on a great
circle passing through the fixed point M ; in the case of a momental oblate
spheroid, which we shall postulate for definiteness, 3 is situated between
7 and R. At any instant the motion consists of a rotation about OR.
In this process F advances normally to the arc of the great circle just
mentioned. The angular distance between F and M is not changed thereby;
thus we can draw the instantaneous path of F as a short arc of a circle of
latitude about M (arrow at the left in Fig. 43). Now R too must change
its position — it must move to the great circle defined by M and the new
position of F. In this motion the angular distance between M and E 1s
conserved, since it is determined by the Poinsot construction. Thus R,
too, advances on the arc
of a circle of latitude \ M
about M (arrow at right
of Fig. 43). The relative
position of points F, M,
and R is now the same as
initially, so that our pro-
cess of reasoning can be
repeated. It follows that
axes of symmetry and rota-
tion each describe a circular
cone about the spatially
Jixed angular momentum,
each cone being iraced with
constant angular velocity;
the latter because the angular velocity is completely determined by the
magnitude of M and its position with respect to the momental ellipsoid.
Thus the character of the regular precession has been fully described.

The same applies of course to a momental prolate spheroid, with the
only difference (cf. Fig. 42b) that R would now be located between F and M.

Fic. 43. Regular precession of the symmetrical top
under no forces.

(3) The Unsymmetrical Top Under No Forces

The form of motion of the symmetrical top just derived could have
been described with more brevity, but less clarity of detail, as follows:
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through the terminus of the angular momentum vector M we pass the
‘““invariable plane ”’ ¢ (c¢f. p. 73) normal to M. About the origin of M
we construct the ellipsoid of twice the kinetic energy (* Poinsot ellipsoid »*)
which is similar to the momental ellipsoid. The Poinsot ellipsoid is
tangent to €3, and the point of tangency is the terminus of the angular
velocity vector w. The instantaneous motion of the top consists of a
rotation of this ellipsoid about w. In this process the ellipsoid rolls without
slipping on the plane 4. If the Poinsot ellipsoid is one of revolution, the
curve of the point of tangency becomes a circle about M; the cones described
by  (“ space cone ') and the axis of figure therefore become circular cones.
Thus we have again the regular precession of the top.

The same construction now leads at once to the Poinsot picture of the
force-free motion of a general (“unsymmetrical ) top of three distinet
principal moments of inertia. Again we let the Poinsot ellipsoid roll on
the invariable plane ¢ (cf. footnote 3 below). Now the curve of contact
is no longer a circle, but a transcendental curve which in general does not
close on itself. Similarly the cones which describe the motion of the axis
of rotation and of the body ““axis” in space are now transcendental
cones. The analysis of the unsymmetrical top, even when under no forces,
leads to elliptic integrals [ef. § 26, (3) ], while that of the symmetrical top
under no forces requires only elementary functions. Of course even for
the unsymmetrical top a pure rotation about one of the three principal
axes is a steady rotation whose representation is elementary.

(4) The Heavy Symmetrical Top

Here we shall not treat the spherical top separately, since its motion

is hardly simpler than that of the symmetrical top.

For the heavy symmetrical top the fixed point O (point of support
in the socket) no longer coincides with the center of mass G' (located on the
axis of symmetry); call s the distance OG. The magnitude of the gravﬂ:a-
tional torque is then

4) |L|=mgs sin 6,

where 8 is the angle between the vertical and the axis of figure. L is normal
to the vertical and to the axis of symmetry or, in other words, it lies along
the line of intersection of the horizontal plane with the equatorial plane of the
momental ellipsoid. This line of intersection is called the line of nodes,

® This follows from the Poinsot construction of p. 132 and from Eq. (26.17a) soon
to be encountered.

* Rolling without sliding is equivalent in meaning to the equality of the rate of change
of the angular velocity vector @ as observed from space and from the body. In
this connection refer to Eq. (26.8a), where this equality is proved.
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s term borrowed from astronomy. For a more precise definition of signs
refer to p. 141. .

Our general Eq. (2) ean no longer be integrated immediately as in the
case of a top under no forces ; rather, the angular momentum is subject
to continuous change given by the law

(5) dM —Ldt.

Thus the infinitesimal vector L dt adds to the vector M at any given instant
t to give the angular momentum at ¢4-df. The terminus of M advances
in the direction of the instantaneous line of nodes, i.e., normal to the
vertical and the axis of symmetry. From this it follows that the projec-
tions of M on the vertical as well as on this axis must be constant. Let
us call the two constants

(6) M =M, and M"=Mg,.

The two quantities M’ and M”, which can be prescribed arbitrarily, are
two constants of integration of the equations of motion.

A third constant is that of total energy E. Corresponding to Eq. (6.18)
we have the gravitational potential energy

(6a) V=mgs cos 8
so that
(7) T-+mgs cos 0=K.

In order to pass to an analytical description of the motion we must
express T and the projections of M mentioned in (6) in terms of suitable
position parameters of the top (the Eulerian angles); this will be carried
?ut in § 35. The calculation of the motion is there shown to lead to elliptic
Integrals.

The regular precession is now no longer the general form of motion
as in the case of the top under no forces, but only results for specially
cbosen values of M’, M” and E. The precessional motion usually observed
With a heavy top excited in the customary way appears to be —but is not —
regular; it can be called pseudo-regular precession. Finally a pure rotation
about the vertically oriented axis of figure is also a possible (stable or
unstable) form of motion, no matter what the magnitude of o.

So far we have considered only the equation of angular momentum (2).
We r.nust throw a quick glance at the equation of linear momentum (1).
'Its right member consists of the force F acting at the fixed point O, which
18 composed of the force of gravity mg acting vertically downward, and the
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reaction of the support, F,, . The change in momentum in the left member is
. d ;

from Eq. (24.2) with u=0, where V is the velocity of the center of mass,
Eq. (1) then makes the simple statement that

Fp=m(V—g).

In other words, the law of linear momentum demands that at any given
instant the support furnish a force equal to the mass of the top X the
acceleration of the mass center diminished by the gravitational acceleration.

(5) The Heavy Unsymmetrical Top

In spite of the efforts of many great mathematicians, all attempts. to 4
integrate the differential equations of this problem in the most general
form have failed so far. Among the integrals of angular momentum (6)
the first remains in effect, to be sure, because even here the gravitational
torque acts about a horizontal axis so that the terminus of the vector M
remains in a horizontal plane fixed in space. The second integral (6) is,
however, invalidated, because it is based on the symmetry of the momental
ellipsoid. Of course the energy integral (7) is valid also for a general
momental ellipsoid.

The soluble special cases of the problem postulate either a particular
mass distribution or a particular form of motion.

The best-known case is that of Kowalewski. The momental ellipsoid is
here assumed to be symmetrical; the center of mass no longer lies on the axis
of the body, but in the equatorial plane defined as the plane perpendicular
to the axis and passing through the fixed point; in addition it is required
that. the moment of inertia about the axis of the body be one half the
equatorial one. In that case the form of motion need not be restricted.

The case of Staude concerns the question as to which axes can serve
as axes of steady rotation when directed vertically. It turns out that
these axes lie in the body on a cone of second degree which, in addition
to the three principal axes, contains also the axis through the center of
mass. To each axis belongs a (to within a sign) definite angular velocity.
Neither mass distribution nor position of the center of mass need be
specialized in this problem.

The case of Hesse, finally, is concerned with the analogue to the simple
motion of a pendulum (spherical pendulum or, in particular, ordinary
pendulum). For such motion the mass center must lie on a certain axis in _
the momental ellipsoid, and the initial excitation must be of proper form, .
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1V.26
just as in the case of the symmetrical top, whose mass center describes
a pure pendulum motion only if the initial angular momentum has no

component along the axis of symmetry.

§ 26. Euler’s Equations.
Quantitative Treatment of the Top Under No Forces

(1) Euler's Equations of Motion

We distinguish between a reference system z, y, z fixed in space and a
second one, X, Y, Z fixed in the body. In the (z, y, z)-system the angular
momentum for motion under no forces has an invariable position: M=
constant [Eq. (25.3) ]; seen from the body, the position of M varies con-
tinuously. We want to study the law of this variation.

Let us therefore focus our attention on a point P fixed in the body,
and a point ¢ fixed in space, the two points being momentarily in
coincidence. Let v be the velocity of P in space, V that of @ in the body.
According to the kinematic Eq. (22.4), Vv =wXT. As seen from the body,
Q moves with equal but opposite velocity to that of P as seen from space,
so that

V= —uXr=rXo.

In tabular form we have

| Seen from Space | Seen from Body
| !

P V== XT V=0

o v=0 V=rXxo

For point Q we choose the spatially fixed terminus of the vector M
and hence write

dM

rzM, V= E?'

dM .
Thus ~; Means ““ change in the body " (we called the change in space M;

it is equal to zero here).
From the second line of our table we then read off

(1) dM

This completes the derivation of Euler's equations for a rotating body under
no forces,
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We shall rewrite them in terms of their components in the (X, ¥, Z).

system. We shall call w;, w,, w; the components of w, and M,, M,, M,
those of M. Eq. (1) yields

W:Mzws—Mawzs
dM
dM

The system of the X, Y, Z is so far completely arbitrary. If, now, we
take the directions X, Y, Z along the principal momen:s of inertia of Eq.

(22.15a) and call these /,, I,, I,, we obtain, by virtue of the general relation
(24.9),

3) Mi=1w, Mo=I,wy, My=I3wy;
and (2) takes the simple form

L% (I, Iy s,

1de
d
4) L5 =) wy 0,
d
13%3: (Iy—Ip) oy w,.

It is these remarkably symmetrical and elegant equations one usually
thinks of when one speaks of Euler’s equations.

Let us now extend them to include the case that an external torque
L is in effec.. In that case the terminus of M is no longer fixed in space,
but, according to (25.2), has the velocity v=L.

As seen from the body, our point ¢ now moves with a velocity com-
posed of v=L and V=rxe. It follows that Eq. (I) must be changed to

(5) I =~ Mxo+L

and the components of L with respect to X, ¥, Z must be added to the
right members of (2) and (4). This yields Euler’s equations of motion for
a rigid body with a fixed point.

We shall write these equations explicitly only for the case of the heavy
symmetrical top, where L acts about the line of nodes and, from (25.4),
has the magnitude

|L|=mgs sin 8.
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In order to dispel all ambiguities contained in the meaning of the words
vertical, axis of symmetry, line of nodes, we agree that
the positive side of the spatially fixed z-axis points up and defines
the vertical;
the positive side of the Z-axis passes through the mass center and
defines the axis of symmetry; it makes an angle 8 with the vertical;
the line of nodes is the semi-infinite line normal to the positive z-
and Z-axes and in the direction of advance of a right-handed screw
as # Increases.
We further specify that the distance s is to be a positive quantity. Call ¢
the angle which the line of nodes makes with the positive X-axis. The
components of L with respect to X, ¥, Z are then given by

(5a) mgs sin 0 cos , —mgssin fsing, O

respectively, and with I, =I, equations (4) go over into

Il'%‘ == (I,— 1) wy g +mgs sin 6 cos ¢
(6) Il%2=(I3—II)w3wl—~mgs sin 6 sin ¢
5% —o.

The last equation shows that for the heavy symmetrical top (and therefore
a fortiort for one under no forces) we have

(7) I, wy= M 4= const.,

which we already knew. We see at the same time that Euler’s equations
are not suited for a further integration for the heavy top, since as yet we are
ignorant of the relation between the w;, w, and the 8, ¢.

As far as the w,, w, wjy; are concerned, we wish to emphasize very
strongly that they are not velocities in the ordinary sense, i.e., not derivatives
W.ith respect to time of spatial measurements of some sort. Indeed, in
Xlew of the expression defined on p. 50, we can aptly designate them as

non-holonomic velocity components.”

We shall finally write (5) in a somewhat different form. Since v is the
velocity as seen from space, we can generalize our expression by substi-

tuting VzM for v=L. We thus obtain
(8) M= LoxM,

40 equation which, by the analysis of p. 139, is valid for all (axial or polar)
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vectors. If, specifically, we apply it to the angular velocity vector ¢,
it simply yields

(8a) 6= .

For the angular velocity vector w and only for this vector the spatial change
is equal to the change as judged from the body. It is this rule to which
we referred in the footnote on p. 136.

(2) Regular Precession of the Symmetrical Top Under No Forces
and Euler’s Theory of Polar Fluctuations

We need not say any more about the spherical top. Its general motion
is a pure rotation about an axis fixed in the body. This follows at once
from Eqs. (4) if we put I,=1,=1,. As we know from § 25, subsec. 1,
this axis is at the same time fixed in space and coincides with the angular
momentum direction.,

Let us now turn to the symmetrical top, I,=17,# ;. The third Eq. (4)
yields

wq == coNst.

as we already know from Eq. (7). The first two equations are

d
I1T&:1 = (I~ I3)wy g

(9)

d
IIE(%? = (I3 I} )w; g

It is convenient to consolidate them into one by introducing a complex
variable. Multiply the second equation by 7 and add to the first to obtain

ds . .
(10) Ila=z(13—-11)8w3, §=w;+rw,y.
Let us abbreviate this by putting

(11) a= "1y,

so that an integration of (10) gives
(12) s=sy€', s,=constant of integration.

s is the projection of the angular velocity vector » on the equatorial plane
of the top, if we use this plane as the complex plane of s. Eq. (12)
states that this projection describes a circle of radius s, with the constant
angular velocity x. At the same time the total angular velocity vector
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w describes & circular cone about the axis of figure. The vertex angle 8
of the cone is given by

(w12+w=2)} . E)_I .
wy T ws

(122) tan B=

This is the picture of the regular precession which is seen by an observer
jocated on the top. (To an observer fixed in space the axis of the top
rotates of course about the instantaneous axis of rotation which, as we saw
earlier describes in its turn a circular cone about the spatially fixed angular
momentum vector M.)  Since it is our intention to apply the foregoing to the
earth, the viewpoint of the observer located on the top rather than that
of the one fixed in space will be useful, as it corresponds to the viewpoint
of a human being located on the earth.

The earth is a top whose momental ellipsoid is an oblate spheroid.
We call the geometric North Pole the point at which the axis of symmetry
pierces the surface of the earth ; it is, in general, distinct from the celestial
North Pole which is the point at which the angular velocity vector cuts
through the earth’s surface. According to the Euler theory reproduced
above, the celestial North Pole describes a circle about the geometric North
Pole, a phenomenon called Eulerian motion. Inasmuch as it is the path
of the rotational pole, this circle is also referred to as the polhode.

A suitable measure of the flattening of the earth is the so-called ellipticity

13_11 ]. .
(13) I, ™ 300

The angular velocity of the earth is determined by the length of the day ;
we have

(14) W~ w= 52%
from which, according to (11),
15) = ey

S wg= md&y_l.

Thus Euler’s period for the precession amounts to

(16) 2{ =300 days= 10 months.

We are accustomed to think of the axis of rotation of the earth as fixed

;{1 the globe and passing through the geometrical poles. This is not
'8orously true. Every movement of mass on the earth along a longitude
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must change the position of the axis of rotation®, and every movement of
mass along a circle of latitude must change the angular velocity, that i,
the length of the day; both changes are a result of the law of conservatiop,
of angular momentum. Let us imagine that this movement has ceased anq 3
that the celestial pole is deviated from the geometric one. In that case 7§
the axis of rotation would,

by virtue of the Kulerian /60° 1
motion, commence & circular '-j
motion about the geometric
pole. % o

Let us now compare our
theoretical results with the
observations of polar fluctu- 0 op B
ations, which Phave been - Ogs — weE
gathered by international k/o 98
cooperation. In Fig. 44 we 19% 99

have sketched the polhode
obtained between the years
1895 and 1900.

The average deviation of 0° Greenwich

the celestial pole, i.e., the

di £ Euler’s circl Frg. 44. Polar fluctuations between the years
mean racius o ) Ci, 1895 and 1900. Confirmation of Chandler’s
amounts to about §” of arc or period.

4 meters on the earth’s sur- 1
face, according to observations between these years. But instead of a period
of 10 months we have, according to Fig. 44, 3} complete revolutions for the
four years 1896-1900, which corresponds to a period of 14 months.

The fourteen-month period is called Chandler’s period after its discoverer.
Its explanation lies in the elastic deformations that the earth suffers as a
result of the changed centrifugal effect caused by polar fluctuations. The
modulus of elasticity of the earth compares in magnitude to that of steel. -

The observed polhode, as drawn in Fig. 44, can now be explained as &
superposition of 1) fluctuations occurring with Chandler’s period, 2) annual 3
fluctuations evidently of meteorological origin, and 3) deviations at irregular
intervals which may point to isolated and unrelated mass transports.
No trace remains of Euler’s ten-month period which was derived by assuming
the earth to be an ideal rigid body.

5 The terrestrial mass transport most important for this effect seems to be the yearly
migration of the air pressure maximum from the continent of Asia to the Pacific
Ocean and back,
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In agreement with usage in gyroscopic theory we have here described
the motion of the earth’s axis first investigated by Euler as a ‘‘ precession
under NO forces.” 'We have thus usurped a word having an entirely different
meaning in astronomical usage. There, * precession’” denotes a slow
rotation of the earth’s axis about the normal to the ecliptic which causes
an advance of the equinoctial points of 50" per year. This precession of

the equinoxes has a period of 5:56—(;),,=26,000 years. Instead of ‘ precession

of the equinoxes ~” we could also speak of an “ advance of the line of nodes
(line of inter-section of the plane of the ecliptic with the equatorial plane
of the earth); as mentioned earlier, our designation, * line of nodes,” was
porrowed from astronomy.

The precession of the equinoxes is not a free one, but rather a motion
forced on the global top by the joint effect of the attractions of sun and
moon.

We shall clarify this effect by means of Fig. 45, where we have, at least
qualitatively, anticipated the theory of the heavy symmetrical top.

Nalrm.

=

(D

L
Y
N

F1a. 45. Precession of the earth’s axis, called ‘‘ precession of the equinoxes.”

The diagram shows the plane of the ecliptic on which a circle is drawn.
9”9 should think of the circumference of this circle as being uniformly
Smeared ” with the masses of sun ® and moon ) (actually we should
draw two circles, one for the sun and one for the moons; we have fused
E?Iise two circles into f)ne). The uniforrg mass distribution represents a
ande average over the instantaneous positions relative to the earth of sun
moon during their revolutions (in the sense of a Gaussian perturbation
Eizht?}?)‘ We ]'Ufﬂiify the taking of this time average by the experimental
Pregess‘r‘it the Pe_rlods of sun and moon are very small compared with the
_____io_n_PEIOd mentioned above, so that this precession can in no way

8
A .
8 8 matter of fact the moon is so close to the earth that its effect is about twice
88 great as that of the sun.
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depend on the instantaneous positions of sun and moon. At the center of
the ® + ) circle we see a cross-section of the earth with its two protuber- }
ances at the equator. Only these latter have a part in the pheno- - "
menon in question; for the attraction of the ® + ) ring tends to pull the
two protuberances into the plane of the ecliptic, an effect which is intuitively .
almost obvious. We therefore have a torque about the line of nodes N
in the sense of the arrow drawn about N. Now this torque is of the same
type as the gravitational torque acting on a top whose mass center lies
below the fixed point of support. The result is therefore similar to that in the
case of the top. Rather than yield to the torque the axis of figure ““ escapes >’
in a perpendicular direction and describes a cone of precession about the
vertical, here the normal to the ecliptic.

To be sure, the regular precession is only a special form of motion of
the heavy top (cf. p. 137); under the present circumstances one would
therefore expect the more general pseudo-regular precession consisting of a
regular precession on which small “ nutations” are superposed. Now
these small nutations are nothing but the conical oscillations of the axis
of figure occurring under no forces, hence, in our case, the polar fluctuations
that take place with the pericd of Euler (or that of Chandler, obtained
from the former by global deformation). The pseudo-regular precession
to be expected is thus obtained from the precession of the equinoxes by
addition of the Eulerian nutations occurring in the absence of forces.

Here we must once more apologize for the ambiguous use of a term.
In astronomy one understands by nutation not a free fluctuation of the
earth’s axis, but one forced on it by the motion of the moon. Contrary to
our preceding assumption in Fig. 45, the orbital plane of the moon does not
coincide with that of the ecliptic, but is tilted at an angle of 5° with respect
to it. Under joint action of sun and earth its normal too describes a cone
of precession about the normal to the ecliptic. This precession is tanta-
mount to a recession of the lunar nodes (intersection of moon’s orbit with
ecliptic) which, however, occurs at a much livelier rate than the advance
of the line of nodes of the earth, viz., in 18% years. It is understandable
that the earth’s axis is in its turn implicated in this precession; the recession
of the lunar nodes results in the astronomical nutation of the earth’s axis,
which takes place with the same period.

(3) Motion of an Unsymmetrical Top Under No Forces. Examination
of its Permanent Rotations as to Stability

We turn to the integration of Egs. (4) in the case I, #I,#I; Multi-

plication of these equations by e;, @, w, and addition yields

dw dw dw
Ilwthl +Izw2d_t2+I3CU3"d'_ta=0




1V.26 Euler’s Equations 147

or, inte gra.ted,

(17) %(Ilw12+12w22+13w32):const.:E.

E is the energy constant, and the left member is the kinetic energy, in
agreement with Eq. (22.12b) specialized to principal axes. Instead of (17)
one can evidently also write

(1721) Ekll’l M .

We can instead multiply Eqgs. (4) by fiw,, Ty, J30,; addition once
more yields zero on the right. The result of the integration can be written

(18) (1, )2+ (T3 wp)?2 + (I w5)? = const. = | M2,

On the left we have the sum of the squares of the angular momentum
components. This sum, as we know, remains invariant in the absence
of forces, even if the components themselves vary in the course of the
motion.

In (17) and (18) we have two linear homogeneous equations for w,?
wy?, w3 , from which we can, for instance, solve for w,? and «wg® in terms

of wl .
2EI,—|M —1,)
wet = Py~ Pyw?, BL= _—;3—'“" Ba= —;)§
(19)
2EI,—|M|* L4,

2_. _ 2 SRR N R - =
W= Y1 Ya W1 M= TI,— 1) Y2 I(I,—1y)

If we replace these values of w, and w, in the first Eq. (4), we have

dw,y 1,—13
(£0) [(B1—F2w:®) (?’1_'}’20112)]%: I, dt.
t is therefore an elliptic integral of the first kind in w; (cf. p. 100); function
theory allows us to state conversely that w, is an elliptic function of the
time. The same holds of course for w, and ws.

We furthermore deduce from Eqs. (17) and (18) that the polhode cone
or body cone is no longer a circular cone as in the case of the symmetrical
top, but a cone of fourth degree.

We shall finally consider the rotations of the unsymmetrical top about
one of ity threc principal axes which, as we know [cf. § 25, toward end
of (3) ], are steady rotations. Let us, for definiteness, put

A>B>C.

W'_e shall show that the rotations about the axes of the greafest and smallest
Principal moment of inertia are stable, those about the axis of the infermediate
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principal moment are unstable. We choose Eqs. (17) and (18) as starting
point. It will be convenient in connection with the diagrams below to
rewrite these in terms of the angular momentum components M,, M,, M,

(21a) %12 +1}i:2_ + %’*—2 = const.,
(21b) M2 M2+ M2=const.— | M2

Eq. (21b) describes a sphere of radius | M |, (2la) an ellipsoid with three
distinet axes (a ““ non-degenerate ’ ellipsoid).
Case 1. Rotation about the longest axis of /’
the ellipsoid (21a). In a pure rotation the sphere
is tangent to the ellipsoid from the outside at

point 4, Fig. 46a. A small jolt will in general A
alter both the sphere and the ellipsoid. The
point of tangency A will change to a small
curve of intersection which remains, however, \\__\_//
in the neighborhood of A. A narrow body cone .
. . . . Fia. 46a. Stable rotation
is the result; the original rotation proves to be .
of unsymmetrical top about

stable. the longest axis of the

The same is true in case 3, rotation about momental ellipsoid.

the shortest axis of the ellipsoid (21a). The

sphere now lies inside the ellipsoid and is hence tangent to it from the
inside. A small jolt will again cause the point of tangency to transform
into a neighboring curve; again the original rotation is stable.

Case 2. Rotation about the intermediate axis. The sphere infersects
the ellipsoid in a curve of the fourth degree; its singular point B (foremost
point of Fig. 46b) represents the original rotation. If the top is given a
small impulse, the curve of intersection splits into two branches. The
axig of rotation wanders off along one of these branches and moves further
and further from its initial position in the body. The rotation is unstable.

It is instructive to prove this
analytically; one proceeds from the
differential equations (4). One can /—\
show (problem IV.2) that the lateral
components generated by a small
perturbation of the original rotation
satisfy two simultaneous differential
equations of first order. These have
solutions of trigonometric character
in cases 1 and 3, exponential char- Fig. 46b. Unstable rotation of unsym-
acter in case 2 (method of infinitesimal 1 c¢rical top about the intermediate axis
oscillations as stability criterion). of the momental ellipsoid.
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Let us perform the following experiment with a (full) matchbox: we
hold the box between thumb' and forejﬁnger .at oppo.site ends of its shortest
edge and flip it into the air, thus 1mpartmg to it c‘onsiderable angular
momentum about this shortest edge. We notice that if the box originally
shows its label, it will continue to do so throughout the motion. The
same phenomenon oceurs, though less clearly, if we hold the box at opposite
ends of its longest edge, and flip it as before. If, instead, we hold it
at opposite ends of the intermediate edge, with the striking surface showing,
and repeat the procedure, we shall not see this surface throughout the
motion, but rather a distinct change of colors.

Another striking example of instability of a state of motion is the
following: occasionally one finds smooth-worn, flat pebbles in nature
which, if spun about their vertical axis on a flat support, show stability
of motion only for one sense of rotation; if made to spin in the opposite
sense, they will start to wobble more and more violently, and finally end
up by spinning in the stable direction opposite to their original angular
momentum. The same can often be observed with small pocketknives
(penknives) set to stand edgewise with blade folded in, when one gives them
a gentle impulse.

We can perform a geometrically well-defined, instructive experiment
in this connection. Let us take the wocden model of a non-degenerate
flat ellipsoid of principal axes a, b, ¢ (@ and b much larger than ¢) and
equip it with a heavy metal strip which, in its original position, hugs the upper
surface of the ellipsoid in its (ac)-section. The strip can be rotated about
the short c-axis, but is clamped down during each experiment. In the
position ac¢ the strip does not disturb the symmetry of the mass distri-
bution. Both senses of spin about ¢ are therefore equally stable. Let us
now turn the strip by a small angle from this position. The two principal
axes of inertia @ and b are then each displaced by a small angle y; the
symmetry of the lower surface facing the plane support is determined by
the two principal radii of curvature in the planes ac and be; thus the
symmetry of this surface remains unchanged. The direction of spin in the
sense of the acute angle y is now geometrically *“ distinguishable ™ from that
In the opposite sense. Indeed the former is stable, the latter unstable
since it is accompanied by rolling motions which increase with time.

_ A more elegant, though less easily achievable, form of the experiment
1s the following (G. T. Walker demonstrated it to us at Trinity College,
Cambridge, in 1899): the non-degenerate ellipsoid is made of brass sheet;
a certain circular region about the point of support has been stamped out
and can be moved with respect to the remaining ellipsoidal shell. By a
small angular displacement of this circular plug the curvature relations of the
lower surface near the point of support are altered with respect to the
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inertial distribution of the shell, which remains sensibly unchanged. This
alteration is so slight that it passes unnoticed when the ellipsoid is examined,

Nevertheless one sense of spin is again preferred to the other.

These experiments with the non-degenerate ellipsoid, while enlightening
in themselves, also furnish an adequate substitute for the analytical theory
of the phenomenon. Such a theory would have to investigate the rolling
oscillations which might accompany the spin in one direction or the other
when a small perturbation is superposed on this spin; it would show that
the characteristic equation for the frequency of these oscillations has only
real roots in the one case, some complex roots in the other. In the first
case one would decide that the spin was stable, in the second, that it was
unstable, i.e., subject to secular increase of the perturbation. Equations
for this treatment are set up in the treatise of Routh (Advanced Part,
Art. 241 and ff.} cited in § 42.

§ 27. Demonstration Experiments Illustrating the
Theory of the Spinning Top ; Practical Applications

We begin by describing the well-known device known as Cardan’s
suspension, which affords an unusually effective means of demonstrating
the properties of tops and gyroscopes.

The suspension consists of an outer and an inner
ring. The outer ring has a vertical axle borne by the
outer frame or cage; the inner ring has an horizontal
axle with bearings in the outer ring. The flywheel-
shaped top revolves with its axis perpendicular to the
axis of rotation of the inner ring. Fig. 47 shows the
flywheel axle pointing normal to that of the outer
ring, which causes the inner ring to lie in a horizontal
plane. We shall designate this arrangement of the
apparatus as its normal position.

On the axle of the flywheel provision is made for a
means by which angular momentum can be imparted

gm&ﬂ? Gyroscopein 4, the wheel while in its normal position, with the
araan’s SUSPEISIOI. . .

. ponst gimbals at rest. This angular momentum must be
Axis of rotation of

outer ring = vertical,
of rotation of
inner ring =horizontal
perpendicular to pa-
per, axis of rotation of

axis

gyroscope = horizontal
in plane of paper.

so great that all phenomena are essentially dominated
by it and the effect of the mass of the gimbals
becomes negligible.

In the following experiments a considerable
angular momentum and the initial normal position

are presupposed.
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1. We exert a slight pressure downward on the inner ring. This ring
does not give way; instead it is the oufer ring that turns. Thus the axis
of the flywheel moves backward or forward in an horizontal plane, depending
on the position of the point at which the pressure is exerted. Instead of

ressing on the inner ring we can load it unilaterally by means of a small
weight. As long as the angular momentum remains sufficiently great,
the top then describes a reqular precession with horizontal axis.

2. We press on the outer ring. 1t remains motionless, whereas the
;nner ring turns upward or downward from its horizontal position depending
on the sense in which pressure is exerted on the outer one. We can even
deliver a vigorous blow to the outer ring without its vielding noticeably.
All one perceives in that case 1s a rapid conical oscillation of the axis of
the top about an axis close to that of the normal position.

3. If the pressure on the outer ring continues so that, with continual
rotation of the inner ring, the axis of the top approaches the vertical, we
notice that the resistance of the cuter ring weakens more and more. One
can then without effort set the outer ring spinning rapidly, but only in
that sense which corresponds to the direction of the pressurc originally
exerted on the ring.  If one attempts to rotate the outer ring in the opposite
sense, the flywheel “rebels”; its axis suddenly tends in the opposite
direction, thus causing the inner ring to flip through an angle of 180°.
Now we can turn the outer ring without effort in this opposite direction,
but another flipping of the top occurs if we return to the original sense of
rotation.

4. This is the tendency of the spins to align parallel to each other which was
emphasized by Foucault, The axis of the top is stable in the vertical position
as long as its spin is homologous (=in the same sense) to that of the outer
ring. 1f the spins are anti-parallel, this position is, on the contrary, unstable
to a high degree and the axis comes to rest only when the opposite direction
has been attained; in this latter direction homologous parallelism of the
two spin axes prevails again. If we exert pressure on alternate sides of
t-.he outer ring in the proper rhythm, we can cause the top to revolve con-
tinually about the axis of the inner ring.

5.. If we tie the inner ring to the outer one, so that the movability of
the inner ring is destroyed, the resistance of the top to motion is destroyed
as well.  Seemingly without a will of its own, the top then obeys all pressures
exerted on the outer ring, just as if it did not have any spin. Thus, typical
%Ir‘:(;scopic effects occur only in the case of the top with three degrees of
ho:;yeovm, and‘ are complc?t(ﬂy absent in that of two degrees. One can,

ver, restitute the missing degree of freedom by clamping the top to
:[i};e rgtat-ing surface of the turning stool described on p. 74; this must be
ne m such a way that the axis of the outer ring, which has so far been
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kept vertical, is tilted with respect to the axis of the stool (which remains
vertical) at not too small an angle. Then the axis of the top with two
degrees of freedom tends to align itself with the axis of the rotating support,
just as a compass needle turns towards the North Pole, i.e., in the sense of
the homologous parallelism described above. Thus the single ring con-
taining the top will come to lie in a vertical plane, with one or the other
of the axle pins of the top uppermost, depending on the sense in which
the stool is rotated.

The explanation of all these phenomena is contained in the fundamental
principle (25.5),

1) dM=LdL.

1. If we press on the inner ring, L is horizontal and coincides with the
axis of rotation of the inner ring. The angular momentum M is directed
toward the left or right of Fig. 47 and is hence deflected laterally by L.
If then we are allowed to assume that the axis of the top, originally in
coincidence with the angular momentum, tends to remain in coincidence
by following it, we have explained the lateral deflection of the axis of
figure, that is, the rotation of the outer ring. That the assumption made
here is actually valid for sufficiently rapid spin of the top will be justified
in § 35 (cf. the discussion about the pseudo-regular precession in that
section).

2. If we exert pressure on the outer ring, L is directed vertically. The
angular momentum, originally directed horizontally to the right or left,
is deflected upward or downward. Under the same assumption as in 1, we
therefore obtain a rotation of the inner ring. If we impart a very strong .
blow to the outer ring, our assumption regarding the coincidence of angular
momentum and axis of the top is only approximately satisfied; we then
obtain the small conical oscillations mentioned earlier, which betray a
small dislocation of the two axes.

3 and 4. By the same token we see that if the axis of angular momentum
is almost vertical and if we rotate the outer ring in a sense homologous
to that of the spin of the top, the axis of angular momentum becomes
more nearly vertical. Gimbals and flywheel then rotate as a whole about
the vertical. The resistance of the outer ring vanishes. If we rotate the
outer ring in the non-homologous or anti-parallel sense, a small deviation
of the axis of angular momentum from the vertical suffices to make the
former recede further and further from the vertical; the almost-vertical
position of the top proves to be unstable with respect to such a non-homolo-
gous rotation.
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5. If we tie inner and outer ring together, the axis of angular momentum
can no longer move in a vertical plane when a vertical torque L is imposed
thereon by a rotation of the outer wheel. The torque is therefore trans-
mitted to the whole system. This is possible because the horizontal change
in direction that the vector M suffers can be compensated by the bearings
of the outer ring, since inner and outer ring are now rigidly connected.
Not so on the turning stool, where the angular momentum can follow the
imposed L at least to some extent, which explains why the axis of the top
tends to point in the direction of the axis of the stool.

We shall now discuss some practical applications. Let it be remarked
:n advance that details on many points of the discussion can be found in
the older literature from which much of the following is borrowed.

(1) The Gyrostabilizer and Related Topics

Around the year 1870 Henry Bessemer, whose name is renowned in
metallurgy, built a drawing room cabin destined for navigation on the
English Channel. The cabin was suspended so that it could move about a
fore-aft axis of the ship and was to be stabilized against the ship’s roll by
means of a flywheel. The axis of the flywheel was, however, rigidly fixed
in the cabin, and therefore lacked the required third degree of freedom
(cf. above under 5). As a result the construction was a failure soon to be
abandoned.

It was O. Schlick, mentioned in connection with the mass balancing
of piston engines (cf. p. 76), who successfully worked out the present problem.
His method was applied to several steamers, including the “ Silvana ”’
of the Hamburg-America Line, and the Italian “ Conte di Savoia ” (consi-
derable literature on the latter exists in American publications). In the
“Silvana *’ the flywheel had a weight of 5,100 kg., a diameter of 1.6 m.,
and made 1,800 r.p.m. (a peripheral velocity of 150 m. per sec.). It was
fixed in a cage which could, like a pendulum, swing about an axis in the
port-starboard direction, so that the axis of symmetry of the flywheel
oscillated in the vertical fore-aft plane of the ship. This cage corresponds
to the inner ring of our demonstration top, the ship’s hull itself to the
f)llter one. The vertical of Fig. 47 is replaced by the long axis of the ship;
instead of the former rotations about the vertical there is now the rolling
of the vessel. The required three degrees of freedom then consist in the
rovlling of the ship, the oscillations of the cage, and the spin of the flywheel.
When the vessel rolls, the axis of the flywheel, vertical in its normal position,
?thernately swings fore and aft in its cage, so that the energy contained
1111 the rolling is converted to energy of motion and position of the cage.
The rolling of the ship and the swinging of the cage are now coupled to each
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kept vertical, is tilted with respect to the axis of the stool (which remains
vertical) at not too small an angle. Then the axis of the top with two
degrees of freedom tends to align itself with the axis of the rotating support,
just as a compass needle turns towards the North Pole, i.e., in the sense of
the homologous parallelism described above. Thus the single ring con-
taining the top will come to lie in a vertical plane, with one or the other
of the axle pins of the top uppermost, depending on the sense in which
the stool is rotated.

The explanation of all these phenomena is contained in the fundamental
principle (25.5),

(1) dM=Ld:.

1. If we press on the inner ring, L is horizontal and coincides with the
axis of rotation of the inner ring. The angular momentum M is directed
toward the left or right of Fig. 47 and is hence deflected laterally by L.
If then we are allowed to assume that the axis of the top, originally in
coincidence with the angular momentum, tends to remain in coincidence
by following it, we have explained the lateral deflection of the axis of
figure, that is, the rotation of the outer ring. That the assumption made
here is actually valid for sufficiently rapid spin of the top will be justified
in § 35 (cf. the discussion about the pseudo-regular precession in that
section).

2. If we exert pressure on the outer ring, L is directed vertically. The
angular momentum, originally directed horizontally to the right or left,
is deflected upward or downward. Under the same assumption as in 1, we
therefore obtain a rotation of the inner ring. If we impart a very strong
blow to the outer ring, our assumption regarding the coincidence of angular
momentum and axis of the top is only approximately satisfied; we then
obtain the small conical oscillations mentioned earlier, which betray a
small dislocation of the two axes.

3 and 4. By the same token we see that if the axis of angular momentum
is almost vertical and if we rotate the outer ring in a sense homologous
to that of the spin of the top, the axis of angular momentum becomes
more nearly vertical. Gimbals and flywheel then rotate as a whole about
the vertical. The resistance of the outer ring vanishes. If we rotate the
outer ring in the non-homologous or anti-parallel sense, a small deviation
of the axis of angular momentum from the vertical suffices to make the
former recede further and further from the vertical; the almost-vertical
position of the top proves to be unstable with respect to such a non-homolo-
gous rotation.
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5. If we tie inner and outer ring together, the axis of angular momentum
canl IO longer move in a vertical plane when a vertical torque L is imposed
thereon by a rotation of the outer wheel. The torque is therefore trans-
mitted to the whole system. This is possible because the horizontal change
in direction that the vector M suffers can be compensated by the bearings
of the outer ring, since inner and outer ring are now rigidly connected.
Not so on the turning stool, where the angular momentum can follow the
imposed L at least to some extent, which explains why the axis of the top
tends to point in the direction of the axis of the stool.

We shall now discuss some practical applications. Let it be remarked
in advance that details on many points of the discussion can be found in
the older literature from which much of the following is borrowed.

(1) The Gyrostabilizer and Related Topics

Around the year 1870 Henry Bessemer, whose name is renowned In
metallurgy, built a drawing room cabin destined for navigation on the
English Channel. The cabin was suspended so that it could move about a
fore-aft axis of the ship and was to be stabilized against the ship’s roll by
means of a flywheel. The axis of the flywheel was, however, rigidly fixed
in the cabin, and therefore lacked the required third degree of freedom
(cf. above under 5). As a result the construction was a failure soon to be
abandoned.

It was O. Schlick, mentioned in connection with the mass balancing
of piston engines (cf. p. 76), who successfully worked out the present problem.
His method was applied to several steamers, including the “Silvana ”’
of the Hamburg-America Line, and the Italian ** Conte di Savoia ” {consi-
derable literature on the latter exists in American publications). In the
“Silvana ”’ the flywheel had a weight of 5,100 kg., a diameter of 1.6 m.,
and made 1,800 r.p.m. (a peripheral velocity of 150 m. per sec.). It was
fixed in a cage which could, like a pendulum, swing about an axis in the
port-starboard direction, so that the axis of symmetry of the flywheel
oscillated in the vertical fore-aft plane of the ship. This cage corresponds
to the inner ring of our demonstration top, the ship’s hull itself to the
F)uter one. The vertical of Fig. 47 is replaced by the long axis of the ship;
stead of the former rotations about the vertical there is now the rolling
of the vessel. The required three degrees of freedom then consist in the
I'Orlling of the ship, the oscillations of the cage, and the spin of the flywheel.
When the vessel rolls, the axis of the flywheel, vertical in its normal position,
..alternately swings fore and aft in its cage, so that the energy contained
}{1 the rolling is converted to energy of motion and position of the cage.
The rolling of the ship and the swinging of the cage are now coupled to each
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other; if, in particular, their corresponding proper oscillations are in
resonance, conditions resembling those of coupled pendulums obtain.
To be sure, no damping of the ship’s oscillation has so far been achieved.
But it is now possible to absorb the oscillation energy of the cage and thus
the energy of roll of the vessel by a braking device acting at the axle of the
cage, Just as the velocity of a car is reduced by a brakeshoe tangent to the
wheel. Of course the braking action at the cage must not be so strong as
to prevent the deflection of the flywheel axis altogether; for then we should
again be confronted with the ineffective top of two degrees of freedom.
Graphs of the rolling motion, similar to seismograms in an earthquake,
show that there exists an optimum or “ best compromise ~” value of braking

action; in the * Silvana ~ the amplitude of roll was reduced to ‘116 to 21—0 of

its original value almost as soon as the flywheel was put in action; the
amplitude of oscillation of the frame hovered around 30° to 40° under these-
circumstances.

Nevertheless the gyrostabilizer has not been applied extensively. This
18 partly due to the danger inherent in the construction — a rapidly rotating,
massive flywheel is an unpleasant passenger —, partly to the invention of
an even more successful competitor, the Frahm stabilization tank, a device
based on an entirely different principle.

A problem connected with the foregoing is that of stabilizing by gyro-
scopic action a turntable on board a ship. We do not know to what extent
this problem has been solved for practical use; for obvious reasons work
on it has been going on in all countries.

(2) The Gyrocompass

This is the finest and most nearly perfect gyroscopic device. Its con-
ception goes back to Foucault. After Foucault had demonstrated the rotation
of the earth by means of his pendulum experiments (cf. Ch. V, § 31), he
made plans to achieve the same end by means of spinning tops. Of his
several attempts we mention only the gyrocompass which was to replace
the magnetic compass. The Foucault gyrocompass consists of a spinning
top of two degrees of freedom constrained to the horizontal plane, which
points, not to the magnetic North Pole, but to the actual celestial North
Pole, the axis of rotation of the earth. Actually we dealt with this
arrangement already in the fifth of our demonstration experiments, where
we put the top with fixed inner ring on the turning stool. The rotating
earth now takes the place of the turning platform of the stool. The only
difference between the two cases lies in the fact that we were able to impart
an arbitrarily large angular velocity to the rotating platform, resulting in a
very strong orientation effect on the top, whereas the angular velocity of
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the earth 1s Very small, so that the alignment of the Foucault gyroscope
takes a considerable time. In the earlier arrangement we mentioned that
the angle between the axes of rotation of the outer ring and the stool should
not be too small. In the present case this angle is the complement of the
geographic latitude, the ° co-latitude ™ at the point of observation. At
the two poles of the earth, where this angle is zero, the orientation power of
the gyrocompass vanishes. In general it is proportional to the angular
yvelocity of the earth, the angular momentum of the top and the sine of the
co-latitude.

Foucault’s experiments lead only to rough indications of the effect.
Its full realization was achieved by Hermann Anschiitz-Kaempfe, by means
of successive improvements in construction. His original goal was to reach
the North Pole by means of a submarine passing under the drift ice. Since
the readings of a magnetic compass become very unreliable near the North
Pole, failing altogether inside a submarine, he had the idea of making the
top serve as his direction-finder. It is true that in the pursuit of this idea
through several decades he did not reach the North Pole; but his experi-
mentation lead to an ideal instrument which has become indispensable m
navigation.

The Anschiitz gyrcscope, unlike that of Foucault, is not constrained
to a horizontal plane, but is merely pulled back into this plane by its weight,
like a pendulum. Originally it was arranged so as to swim in a bath of
mercury. Later constructions made use of two or three tops whose effects
strengthened and corrected each other. The angular momentum of the
spinning tops is kept constant by electric drive. In the latest Anschiitz
construction the whole system is enclosed in a sphere which floats with almost
no friction in a second sphere of only slightly larger radius. Since the
- Byroscope is taken along on trips during which it may not be touched
for several months, provision must be made for a particularly ingenious
automatic lubrication method.

Measures to eliminate the harmful effects of the ship’s own motion are
of special importance. When the ship travels in a curve or changes its
speed, the gyrocompass, with its ability to oscillate about the horizontal
plane, is sensitive to the corresponding inertial forces. These exert pressures
01} the axis of spin, causing it to deflect from its undisturbed position,
With the result that erroneous readings are obtained. One can show that
the motion of the vessel becomes harmless if the free oscillation of the
cOmpass needle about the meridian has the period

b

T= 2#(5)%: (87)3 103 sec=84.4 min,
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which is the same as that of a pendulum of length equal to the earth’s
radius

lzg-lO"m.
Fia

(Law of Schuler, completed by Glitscher?).

A further beautiful application of the gyroscope concerns the 3§
automatic steering mechanism of large steamers. If a ship is to retain g
its course in spite of the motion of waves and ocean currents, the uninter- '!
rupted attention of the helmsman and the corresponding corrective action '
of the steering mechanism are required. This corrective action is, however,
always too late by a certain amount of time, therefore causing losses in

mileage and time. The gyrocompass is, on the contrary, a sense organ

which ““ feels ” much more accurately and swiftly than man, and takes
instantaneous countermeasures. As a result of these countermeasures
the line of travel becomes almost rigorously rectilinear (actually loxodromie,
i.e., a thumb line), which results in a considerable saving in energy. For

this reason every passenger ship of good size is now equipped with such

an automatic steering mechanism.

(3) Gyroscopic Effects in Railroad Wheels and Bicycles

A set of rolling wheels of a railroad car is a spinning top whose angular
momentum c¢an become considerable for fast trains. When the wheels
go around a curve, the angular momentum must, at any instant, be deflected
to a position determined by the normal to the curve. For this, according
to Eq. (1), a torque is required whose axis lies along the direction of travel.
Since such a torque (often called ‘* gyroscopic couple ) is not present, the
“ gyroscopic effect ”’ will result in a countertorque which presses the set
of wheels against the outer rail and pulls it off the inner one. This counter-
torque adds to the moment of the centrifugal force about the direction of
travel. The latter effect is compensated, as we know, by adequate banking
of the roadbed. Both moments have the form

mvw

where v is the velocity of travel, and w the angular velocity of the train
in the curve; m is, in the present case, the mass of the set of wheels reduced
to the wheel periphery, whereas in the centrifugal effect m is the total
mass of the car carried by the wheels. Our gyroscopic couple and 1ts equal
and opposite countertorque are therefore extremely small compared with
the moment of the centrifugal force; one could compensate for it by lifting
the outer rail a very slight additional amount.

7 Cf. Wissensch. Verdffentl. aus den Siemenswerken, 19, 57 (1940),
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More serious effects may result from any vertical irregularities in the
rails, such as, for instance, a ‘ hump >’ on one of the rails (to this category
also belong the increasing and decreasing elevation of one of the rails at
the beglnning and end of a banked curve). Such a hump causes a deviation
of the angular momentum in a vertical direction, and hence a countertorque
which secks to twist the set of wheels out of the rail-bed by pressing, say,
the front wheel of the set against the rail, and pushing the last wheel of the
cet away from the rail. The play allowed by the rails will thus cause the
flanges of the wheels to bite now into one rail, now into the other. This
has indeed been observed on test runs with fast electric trains. In order
to control the condition and exact position of the rails at all times, the
German Reichsbahn uses test cars equipped with gyroscopic instruments, the
latter manufactured by the Anschiitz company.

A bicycle is a doubly non-holonomic system ; for, like the wheel in
problem 1L.1, it has five degrees of freedom in finite motion, but only three
such degrees in infinitesimal motion (rotation of the rear wheel In its instan-
taneous plane, to which the rotation of the front wheel is coupled by the
condition of pure rolling ; rotation about the handle bar axis; and common
rotation of front and rear wheel about the line connecting their points
of contact with the ground), as long as we do not consider the degrees of
freedom of the cyclist himself. It is well-known that given sufficient
velocity the stability of this system relies on the fact that either by means
of rotations of the handle bar, or by means of unconsciously released motions
of the body, the cyclist calls forth suitable centrifugal effects. That the
gyroscopic effects of the wheels are very small compared with these can be
seen from the construction of the wheel; if one wanted to strengthen the
gyrescopic effects, one should provide the wheels with heavy rims and tires
- instead of making them as light as possible. Tt can nevertheless be shown?
that these weak effects contribute their share to the stability of the system.
This is the case because, just as in the automatic steering mechanism of
ships, they react more quickly against a sinking of the center of gravity
than do the centrifugal effects. In the small oscillations which one has to
consider in testing the stability of the motion, the gyroscopic action lags

the O-S'Cﬂlati()ns of the center of gravity by a quarter period, whereas the

_—

P CLF, Klein and A, Sommerfeld, Theorie des Kreisels, Vol, IV, p. 880 and ff. In
orde?:' to carry out the stability considerations we must of course exclude all
partfdpatmg action on the part of the cyclist. Not only must he be assumed
to ride without hands, but also with motionless body; he should act only by
means of his weight. This work also offers detailed material on other applications
and on the mathernatical foundations of the theory of the spinning top.



158 The Rigid Body 1V.27

SUPPLEMENT: THE MECHANICS OF BILLIARDS

The beautiful game of billiards opens up a rich field for applications
of the dynamics of rigid bodies. One of the illustrious names in the history
of mechanies, that of Coriolis?, is connected with it.

The following explanations have as their main object the clarification of - 9

some problems which we shall pose on the subject. In these problems not
only the dynamics of the rolling and sliding ball, but also the theory of
friction on the billiard cloth will come into its own.

-

(@) High and Low Shots

The experienced player almost always gives the ball a “side” or
“ English.” For the time being we shall, however, consider only shots
without English, in which the cue therefore hits the ball in its vertical
median plane, and in a horizontal direction. We distinguish high and
low shots.

We speak of a high shot if the point of impact between cue and ball

lies above %a (a=radius of the cue ball), as measured from the plane of

the table; of a low shot if the ball is hit at a height less than g a (cf. problem

IV.3 in connection with this and the following). Only if the ball is hit
at exactly this height does pure rolling take place from the very start.
By virtue of the moment of inertia of a sphere given on p. 65, the rotation
transmitted to the ball is then of such magnitude that the peripheral
velocity corresponding to it is just equal and opposite at the point of
support to the forward motion of the ball, so that the condition (11.10)
of pure rolling is fulfilled.

For high shots the peripheral velocity at the point of contact generated
by the rotation is opposite to that of the center of mass of the ball and
exceeds the latter. The friction at the cloth opposes the excess velocity
(peripheral velocity — forward velocity), thus augmenting the original
velocity of the mass center: for high shots, friction acts on the ball in the
direction of the shot. The final velocity under pure rolling, which sets in
once the friction has consumed the excess velocity, is greater than the
initial one. Balls that are hit high run for a long time and in general
betray the experienced player.

For low shots the peripheral velocity at the point of contact is opposite
to that of the center of mass, but outweighed by it; for even lower shots
it is directed forward. In both cases friction acts in a direction opposite
to that of the original impact. The final velocity under pure rolling is
smaller than the initial one.

¢ (3, Coriolis, Théorie mathématique des effets du jew de billard. Paris, 1835.

R WA
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As for the impulse Z (dimensions dyne-sec), it is of course to be inter-
preted as the time integral of a very great force F in the direction of the

cue over the very short time of duration 7,

T
=| Fdi.
7=,
The impulsive torque about the center of the ball is accordingly given by
T
Zi~ [ Fldt
Jo

where [ is the distance of the center from the axis of the eue. The impulsive
torque vector is directed perpendicularly to the plane passing through
center and cue axis. For the shots without English so far considered, it is
directed horizontally and is normal to the median plane mentioned above.

(b) Follow Shots and Draw Shots

If the ball, after being struck high, meets one of the other two balls in
central impact, it transfers all its forward motion to the latter because of the
equality of the two masses involved [cf. Eq. (3.27a)]; but it retains its
rotational motion if we neglect the friction between the two balls during the
short time of contact. The instant after the impact the center of the striking
ball is therefore momentarily at rest, while its lowest point glides over the
billiard cloth. The friction thus arising is constant in time and acts on
the ball in the sense of the original forward motion, while its moment about
the center simultaneously slows down the existing rotation. Thus the ball
is accelerated from the state of rest, while its rotation decreases accordingly.
The acceleration ceases as soon as the peripheral velocity at the cloth has
become equal to the forward velocity of the center, whereupon pure rolling
- sets in.  Once this stage is reached, the ball rolls on with constant final
frelocity (we shall neglect the very slow effect of the rolling friction). This
18 the theory of the follow shot.

The ball which is hit low similarly transfers its center of mass velocity
to the struck ball and is momentarily at rest. We shall assume that the
ball was hit very low, at any rate below the center, so that the peripheral
velocity at the point of contact remaining after collision is directed forward.
The friction now acts backward. The ball begins to move with constant
backward acceleration, while at the same time its rotational velocity
deere-ases, until pure rolling sets in. This is the theory of the draw shot.
timsm:‘ti sliding friction is independent of the velocity, the variation with
. 0 _Uhe c'enter of mass velocity v as well as of the peripheral velocity
tr;_aiw 18 a linear one. The exercises so far considered can therefore be

ed more conveniently by graphical than by mathematical methods.
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To do the former we may construct a diagram in which we plot the instan.
taneous values of v and « as ordinates against the time (problem IV.3). :

(c) Trajectories with  English > Under Horiwzontal Impact

If the ball is not hit in the vertical median plane, but to either side of
it, we speak of ““ right English ” and “ left English.” As long as the cue ig
advanced horizontally against the ball, the trajectory remains a straight
line in the direction of the initial impact. 4

The plane of the impulsive torque is now inclined to the vertical median
plane, in high shots either to the right for right English, or to the left for _
left English, this inclination being such that the normal to the plane of the ’
impulsive torque (this normal is parallel to the axial vector torque) is
contained in the vertical plane through the center of the ball normal to the '
median plane. We can decompose the torque into a vertical component §
and a horizontal one at right angles to the direction of the impact. The ¥
first component causes a spin about the vertical diameter of the ball and .| 3
generates a small “ boring friction ”’ at the cloth which has, however, no §
effect on the path of the ball. The lateral component on the other hand
acts in the same way that it did in the shots considered under 1 and 2,
so that the phenomena there observed apply without change to shots Wlth ’ :
English. In particular the trajectory remains rectilinear.

The spin about the vertical diameter makes itself felt in the collision
of the ball with a cushion or with a second ball. In the first case friction
at the cushion occurs which deviates the ball to the left for right English
and to the right for left English as seen by the player. The angle of reflection,
which, for shots without English, is equal to the angle of incidence, i8
thereby altered; as a matter of fact the actual reflected path is generated !
from the equiangular reflected path by a rotation of the latter in the sense
of the vertical spin imparted to the ball. This phenomenon is familiar
to every billiards player. Together with the frictional force at the cushion
there appears a frictional torque about the vertical which weakens the spin
about the vertical diameter. The original English therefore gmdually
disappears after several impacts, a fact which is likewise known to every &
player. In a collision of ball against ball the effect of the English is similar,
acting in the same sense as in a ball-cushion impact. 1

i

(d) Parabolic Path Due to Shot with Vertical Component

The plane of the impulsive torque is now not only inclined as under (c) |
but also tilted forward as seen by the player. The vector torque has f :
therefore not only components along the vertical and lateral directions, _
but also a component in the direction of motion. Thus the point of contact ]
has a component of sliding velocity perpendicular to the initial motion. if
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The friction, which is opposed to the resultant velocity of the point of
contact, therefore makes an angle different from zero with the initial motion.
If we convince ourselves (cf. problem 1V .4) that this angle formed with the
original motion remains constant during the motion, and if we remember
that the magnitude of the friction likewise remains constant, we conclude
that the path of the ball is a parabola in the horizontal plane, since it is
under the influence of a single force of constant magnitude and direction
(principle of J. A. Euler, son of the great Leonhard).

Shots of this type are very surprising to a player who does not have
full knowledge of the laws of friction and the vectorial decomposition of
angular momentum. They are especially useful when the two balls to
be hit are at the two opposite ends of the short side of the table. In that
case the vertical component of the impulse must be very strong, i.e., the
cue must be guided at a small angle to the vertical.



CHAPTER V .
RELATIVE MOTION

The interest in the subject matter of this chapter derives mainly from
the fact that we make all our observations on the rotating earth, which is
not an allowable frame of reference, either in the sense of classical mechanics
or in the sense of the special theory of relativity. In general relativity, 4 |
on the other hand, all systems of reference are permitted (cf. p. 15), so
that a separate theory of relative motion becomes meaningless.

In this chapter we shall adopt the viewpoint that in every theoretically
admitted reference system the mechanics of Newton holds rigorously. We #
shall then ask for the deviations from Newtonian mechanics that result from
the motion of the reference system to which, for practical reasons, we are
chained.

§ 28. Derivation of the Coriolis Force in a Special /}
Case E

Let a mass point move along a meridian of the terrestrial globe, of radius
a, with the constant angular velocity u, while at the same time the earth ;
rotates about its axis with constant angular velocity w. As usual, we call g
f the colatitude, ¢ the (celestial !) longitude. Apart from arbitrary initial
values the motion of our mass point is then given by

(1) O=pt, ¢=wt.

From the Cartesian coordinates of the point,

r=q sin § cos ¢
(2) y=a sin 6 sin ¢
z=qa cos 0,

we obtain by differentiation with respect to ¢,

x=au cos 0 cos ¢—aw sin 0 sin ¢

(3) y=ap cos § sin ¢+aw sin 0 cos ¢
2= —au sin §.
¥— —au?sin 0 cos d—aw? sin 0 cos - 2 apw ccs O sin
(4) Y= —au®sin 0 sin ¢— aw? sin 0 sin ¢-+2 auw cos 0 cos ¢ ]
Z= —au? cos 8. i
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In the triplet of equations (4) the first terms on the right represent the
usual centripetal acceleration which is associated with the motion along
the meridian if the latter is at rest in space. The second terms give the
centripetal acceleration resulting from the motion of a fixed point of the
meridian in & circle of latitude (due to the earth’s rotation about its axis).
The third terms, however, constitute something new, for they represent
the kinematic interplay of both motions. If we multiply (4) by —m, we
obtain the inertial force F* of our mass point in the compound rotation.
In vector form it is

(5) F*=C,4+G,+F..

5

The symbols C; and G, refer, as in (10.3), to ‘ ordinary centrifugal forces.”
C, is directed radially outward from the earth’s center and has the magnitude

|C1|=map2=m%2’ V= 0.

C, is directed outward normal to the earth’s axis, and has the magnitude

g2

a sin 6

|Cy| =ma w? sin §=m » vg=a e sin 6.

We can call the third constituent F, the ‘‘ composite centrifugal force ”

(force centrifuge composée) or Coriolis force. Its complete vector expression
[ef. Eq. (29.4a)] is given by

(6) ch2m Vrelx&).

We have here written v, instead of the vector v, corresponding to the

preceding v,; by this we wish to indicate that quite generally it is the

velocity relative to the rotating reference system that gives rise to F,.
According to (6) the magnitude of F, is

(6a) ]Fcl =2m vy w SN (Vyy, ),
80 that, in our case,

(6b) |F, | =2m vy w cos 6.

€os .9 is of course just the sine of the geographic latitude. As for direction,
F, is perpendicular to both Ve and o, or, equivalently, to C; and G,.
The sense of F, is given by the direction of advance of a right-handed
Serev.v turning from v, to w. This is illustrated in Fig. 48 for a particle
moving from south to north. Two positions, one in the southern and one
In the northern hemisphere, are shown. In the former, corresponding to

t .
_he Sénse of the right-handed screw v, — w, F, acts from east to west;
In the latter, from west to east.
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Instead of a single particle we can also consider a continuous sequence

of such particles, hence a river flowing along the meridian. Fig. 48
then tells us that the inertial force of the water moving from south to 3
north presses against the right bank in the northern hemisphere, against 9§
the left bank in the southern hemisphere. The change of sign in the pressure . 3

is evidently connected with the sine of the
geographic latitude occurring in (6b). This
rule is valid not only for south-north flow,
but, as will be shown in the next section, for
any direction of v,,;, and therefore, in particu-
lar, also for the north-south direction of flow.
This is intuitively obvious in our example.
The west-east velocity of the water deriving
from the earth’s rotation depends on its
distance from the axis of rotation, hence on
the geographic latitude. If the stream moves
from south to north, the water in the northern

hemisphere has an excess of west-east mo- Fie. 48. Special derivation
mentum imported from more southerly ~ of Coriolisforce: amasspoint
latitudes; this excess manifests itself as a moves along a meridian of the

t d. that is. against the right rotating earth with constant
pressure eastward, that is, against the righ velocity Vg corresponding to
bank. But similar reasoning must hold in the constant angular velocity
the case of morth-south motion. In that u as seen from the earth’s
case the water imports a deficiency of west- center.

east motion from the northern latitudes,

Let us mentally add the deficient amount in the sense of Fig. 41, once with 3

+ sign, once with - sign. The part added with — sign has an east-west
direction, and therefore exerts a pressure westward, i.e., again on the right
bank. The same process of reasoning shows that in the southern hemisphere
the river exerts excess pressure on its left bank, for south-north as well as
north-south motion of the water.

Geographers have proved by numerous examples that the pressure
against the right bank in the northern hemisphere manifests itself in a
stronger erosion of the right embankment (Baer law of river displacements);
in addition the water stands slightly but measurably higher at the right
shore of the river.

Of much greater significance are the effects of the Coriolis force on
ocean currents (deviation of the Gulf Stream and tidal currents of the
northern hemisphere to the right).

Tt is, however, in the atmosphere that its effects are most pronounced.

The well-known law of Buys-Ballot states that the wind does not blow &

in the direction of the pressure gradient, but is deviated considerably,

e e
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to the right in the northern, to the left in the southern hemisphere; it is
only at the equator that it follows the pressure gradient exactly.

All these phenomena are immediate results of Newton’s first law and in
the last analysis derive from the fact that in mechanics the rotating earth
is not an admissible reference frame.

In this section we have calculated the Coriolis force with the help of
spherical polar coordinates. In problem V.1 we shall derive it in cylindrical

coordinates.

§ 29. The General Differential Equations of Relative
Motion

We replace the earth by an arbitrary rigid body B, which rotates with
instantaneous angular velocity « about a fixed point O. Let P be a
particle which moves with arbitrarily varying velocity relative to B. Its velo-
city with respect to space is then composed of this relative velocity and the
velocity in space of a point of the body instantaneously in coincidence
with P. According to (22.4) the latter is given by wXr. As in (22.4)
we shall designate by w the velocity of P with respect to space; furthermore
we shall call v (instead of v,,) the relative velocity of P with respect to B.
We then have

(1) W=V-+oXT.

Let us agree that temporal changes be designated by an overhead dot if

observed from space, by gt if observed from the body B. We can then
write

(2a) W=F,

2h . dr,

(2b) ==

(2(3) = %—li.—}—(x)xr

The acceleration of our point P in space is given from (1) as

(3) W=V+oXrt+oXr.

Iél the middle term of the right member we substitute the value of r from
(2a) and (1) to obtain

(3a) @xi'zmxv-{-mx(@xr)-
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We shall transform the first term on the right of (3) by replacing the arbitrary

vector r in (2c) by v. This yields

(3b) V=2 Loxv.
Substitution of (3a) and (3b) into (3) gives

(4) ' :%+2mxv+mx(wxr)+éxr.

We notice that according to (26.8a) we can write either & or X in the

dt
last term of Eq. (4).

From (4) we proceed to the inertial force acting on our particle by
multiplying both sides by —m. At the left we then have the inertial
force F* in space; the first term on the right is the inertial force observed
in the non-inertial reference system B, which we shall call Fy,. The second
term on the right gives the expression for the Coriolis force which we met

in (28.6), viz.,
(4a) —2meXv=-+2mvXe=F,

Our present treatment therefore supplements that of the preceding section
by furnishing a general derivation of the Coriolis force. In the next to
last term of Eq. (4) one easily recognizes (after multiplication by —m)
the ordinary centrifugal force C, which appears to act on our particle by
virtue of the rotation of the reference system B, and which was designated
by C, in Eq. (28.5).

From (4) we therefore have, collecting all the terms,

(5) F*=FFX +C+F,+mrXxao.
Here we replace ¥ by its value from the definition
dv
m=—mg

and recall that due to the equilibrium of external and inertial forces in the
system fixed in space we must have

FLF*—0.

Thus we obtain the general differential equation of relative motion
(6) m%Y — F+4-C+F tmrXo.

We see that in the system B there appear, in addition to the actual
external force, the fictitious forces G and F,; from the standpoint of an
observer moving with B, they act in the same manner as the external

4
i
H
-
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2
5
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force F; actually, they result solely from the inertia of the particle m
fixed in, OT moving relative to, a non-Newtonian reference frame. The
last term on the right of (6) is of similar origin; it stems from a possible
gcceleration or change in direction of the rotation. Applied to the earth it
corresponds to the polar fluctuations and can certainly be neglected as
vanishingly small. The differential equation (6) will be used in the three
following sections and in problems V.1 and V.2.

§ 30. Free Fall on the Rotating Earth ; Nature of the
Gyroscopic Terms

Whenever we try to measure the effect of gravity, it is not just the gravi-
tational attraction itself, but the resultant of the earth’s attraction F and
the centrifugal force G that is observed. The flattening of the geoid, i.e.,
of the mean terrestrial surface, is itself determined by this resultant, and,
in fact, in such a manner that the geoid is everywhere normal to it. If

we put
(1) F{C=-mg,

the gravitational acceleration g is a vector which has the magnitude g,
but a direction along the normal to the geoid, rather than along the produced
radius of the earth.

From (29.6) we obtain, in view of (1) and (28.6) and with neglect of the
term in ¢,

(2) B _gt+2vXo.

Let us now resolve this vector equation
Into coordinate equations by introducing
an orthogonal system ¢, y, {, fixed in the

earth, and defined as follows (cf. Fig. 49): W
§=north-south direction on the earth, Fie. 49. Free fall on rotating
(3) n—w . . earth. System of coordinates: £
7= west-east direction on the earth, along a meridian, 7 along a circle
{=point of observation — zenith — of latitude, ¢ along the normal to
normal to geoid. the geoid.
We then have, in component form,

vV = (d—gs d_n; qg .

(4 de dt dt,)’

) g (0, 0, 7);

© =(—w cos ¢, 0, w sin ¢);
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é being the geographic latitude as in Fig. 49. It then follows from (2) the

d? . d
daf" 2wsm¢d—z

{5) %’z ~_2wsin¢§—;§ —2wcos¢%
dag—{—g# 2w oos¢%§

Before proceeding to integrate (5) we wish to examine the general:
character of these equations. They are distinguished by the fact that the g
array of coefficients of the right-hand side is antisymmetric. Let us
introduce abbreviations

(6) «=2wsing$, B=0, y=—2w cosd.

The array then is clearly antisymmetric about the diagonal, as shown.i.
below:

g | ody | &
dt dt dt
?iitf 0 o B
7 3
@ % — 0 ¥ o
g+l -8 |~y 0

This antisymmetric character indicates conservation of energy. If dmgonal
terms were present or if, speaking more generally, the array of coeﬁimentﬂ
had a symmetric part, we should have dissipation of energy. :

For let us multiply Eqgs. (5) row by row by Cflf d_t’ —i’ and add. All
the coefficients of «, 8 and y on the right vanish, and we are left with
1d[(dgy®, (dn a
sl () + () + (@) ]+ oo
that is,
(8) T+ V=const.

Here 7' and V are the kinetic and potential energy of relative motion (whe
we have put the mass—1). This conservative character of our array
coefficients can be made evident even without calculation; for by virb
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f the factor VXo, F, is perpendicular to the motion and therefore does no

(x)vork in analogy with magnetic forces in electrodynamics.
If’ on the other hand, the array of coefficients had a symmetric contri-

bution, We should have

) 2 @+7v)<0

where the < sign results from the assumption that the signs of the coefficients
satisfy the physically necessary conditions corresponding to a damping of
the motion. It is seen that (9) results not in conservation, but rather,
as asserted, in dissipation of energy. An example (only one-dimensional,
it must be admitted) of the dissipative character of an even array of coeffi-
cients is furnished by Egs. (8) and (9) in the treatment of damped oscillations
of Chapter 1I, § 19.

With Lord Kelvin we call the terms of an antisymmetric array of
coefficients gyroscopic terms. The name suggests that they indicate an
internal gyration of the system (in our case the earth) which has not been
taken into account; explicitly in setting up the problem, but has instead
been incorporated in the choice of coordinates (in our case the ¢, 5, {).
Such gyroscopic terms play an important role in general laws concerning
the stability of equilibria and motions.

We shall now proceed with the integration of Egs. (5). Let us postulate

a free fall from height A without initial velocity. We therefore require
at t=0:

(10) §=1=0,{=h
d§ _dy _ df

From the first and third Eq. (5) we then have

d . d
(11) a%z?wn sin ¢, (-Eg—{— gt =2wn cos .

Replacing these in the second Eq. (5), we obtain

1 d?
(12) ?Fr:]+4 win=Ct, C=2wyg cos .

The j : .

co;n;n :fegral ,Of this equation is found by the general rule laid down in

equa,t‘c on with Eq. (19.4), viz., “ particular solution of the inhomogeneous
101 -+ general solution of the homogeneous equation.” In the present

Case thig leads to

C .
= T t+ A sin 2wi+4B cos 2wt.
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Conditions (10) require that we put

B=0, Z2wd=-

E”z’ l.e.,

(13) _ ¢ (t— sin th):gcosqﬁ (tg sin sz)_

T~ 4p2 2w 2w 20w

According to the meaning of 5, cf. (3), this is the eastward deflection.
¢ is the southward deflection. From {11) and (13) it satisfies

d . sin 2wl
d—f =g sin ¢ cos ¢ (t— ?l%w(_“_)

whose solution, with due regard for (10}, is
(14) =g sin ¢ cos ¢ (3—2 — 1——?5—2-%9—1&)'

With the help of (13) and (10) we finally obtain from the second Eq. (11)
the motion along the vertical,

i {2 1— 2wt
(15) (=h—2 +geos? ¢ (5— —qor )

wt is a very small number of order of magnitude (time of fall) = (1 day).
We can therefore develop the solutions in powers of wf. In lieu of (13),
(14), and (15) we then obtain

2 2
q:‘% cos ¢ wi, 5:% sin ¢ cos ¢ (wt)?

C—h—g-‘f(l— cos* (wt)z).

The eastward deflection is accordingly of the first, the southward deflection
of the second order in wt. The deviation from the law of freely falling
bodies along the vertical caused by the earth’s rotation is likewise only
of the second order in wt. The eastward deflection has been observed in
several instances and found to be in agreement with theory; under favorable
circumstances (deep mine shaft) it amounts to several centimeters.

Evidently these (observable or unobservable) deflections are due to
the fact that the initial conditions (10) which lie at the very basis of both
theory and experiment prescribe rest with respect to the earth. They hence
imply a certain velocity in space, which is of the magnitude (earth’s angular
velocity) + (distance from axis of earth). This velocity is somewhat different
from the velocity with which the earth’s surface moves away under the falling
body. Tt is then clear that the body does not hit the earth at the exact
vertical projection of its initial position.,
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§ 31. Foucault’s Pendulum

Once more Egs. (30.5) are in force, but with the added condition that the
mass point have the constant distance [ from the point of suspension of
the pendulum. We write this condition in a form similar to that used for
the spherical pendulum (18.1), ie.,

(1) F=75 (42— 1%)=0

and introduce the Lagrange multiplier associated with it. Eqgs. (30.5)
then read

2 . d
%t—f: 2wsmq$~d—7: +AE
2 . d 1
(2) %:#Zwsmgba% —2wcosq§5d§—|—?m
i d
%%?—Fg: 2 w cos q5£ +AL.

We shall of course restrict ourselves to small oscillations. We therefore
regard % and 7—; as small quantities of the first order; from (1) it follows
that ZE; —1 up to quantities of the second order. More precisely, for

points in the neighborhood of the rest position we can write
{ = —1 (1 +quantities of second order),

since { is of course directed vertically upward. The third Eq. (,{2) then
shows that up to quantities of the first order

(3) g= — Al, hence A—_-—%-

. . d
Once more we write down the first two Egs. (2), neglecting the term in d—f

because small of second order, and using the abbreviation
(4) U= w Sin ¢,

to obtain

3 dn g
2% g =0
% d? dg

7 g
ai T2 g =0

It is convenient to consolidate them in complex form by multiplying the
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second Eq. (5) by 7, adding it to the first one, and, as on p. 142, Eq. (26.10),

introducing the new variable

(6) o= £tin.
We obtain

d3 . d
(7) Et—:—|—2zu£+%8=0,

which is a homogeneous linear differential equation of second order with
constant coefficients. Note that it is the gyroscopic character of the
middle terms of Egs. (6) which made step (5) — (7) possible.

Eq. (7) is solved by putting

s=A et
Substitution in (7) gives

o?4-2u oa— E{:O,

a quadratic equation in « with the roots

(8) a1=—u—{—(u2+%)§ and  oy=-—u-— (uz—l—%)i-
It follows that the general solution of (7) is

&) s=A, ettt 4, ¢iat,

The constants 4, and A4, are determined from the initial conditions. In =

agreement with the experimental arrangement we shall stipulate that these
be

df  dg _
(10) f=a, 7=0, F=7=0 att=0.

We therefore imagine that the bob is pulled by an amount a out of its
plumb line position along the positive ¢-axis, i.e. (cf. Fig. 50), southward

along the meridian, and then released without impulse. From (10) the
initial values of our complex variables are

(10a) s=a, 20 att=0.
Eq. (9) then gives

(11) A+ 4,=a,
(11a) Ao+ Age,=0,

(11b) A1=§[1+_(MT:’__%_)_§], A=t

1—(u—“r"i§—)3}

Bt -

i
4
b
2
]
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' . d o .
Next we calculate the expression for a—i ; 1t 1s somewhat less involved

than that for s itsell. Recalling (11a) we have

% =toy A, e [e?‘(u‘+‘§)*t —e—i(u+g) t] ,
from which, according to (8) and (11b),
éf__ Q—Wﬁ—l-— —iul o3 2 g }
(12) dr al(u2+€)’}e sin (u + l) t,
l

We arrive at the following conclusions: whenever the sine factor vanishes,
we have

?{;ZO and hence af_dy _

dt:Et_O'

This represents the occurrence of a turning point or cusp in the trajectory
of the bob. According to our initial conditions (10), the first one of these
occurs at {=0. If we put

(13) =27 _,

succeeding cusps occur at

i= 5, t=T, t:%z, -

L
t=1T is the duration of a complete to-and-fro motion.
Putting u=0 (that is, w=0) makes Eq. (13) agree with
the period of oscillation of a simple pendulum without
terrestrial rotation - as would be expected.

In order to see where the bob of our Foucault pen-
dulum is located at ¢=7, we make use of (13) and (11)
to obtain from (9)

u’T S
85=T:Ale—iu7'+2fri+A26—iu-T*2ni= (A1+A2)e—iuT:ae—iuT.
The boh therefore has th i i ot
e same distance a from its rest Foucault’s pen-
position as it had at the outset of the motion, but its dulum. Bird’s-
a»Zi?nuth no longer coincides with the southward meridian, eye view of the
as initially, but has acquired a lag with respect to this trajectory of the

bob. Initial dis-
placement  to

T u I\ % . the south; west-
ull=2m—— == ?”(‘c}) w sin ¢. | ward deflection

g\t —
(u2—|— f) in a complete
oscillation,

direction given by the angle
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The bob is thus deflected westward, cf. Fig. 50. We can explain this by
saying that for zero rotation of the earth the pendulum bob would pursue a
straight south-north-south course. In our case, however, the Coriolig
force, through its * pressure on the right bank,” displaces the trajectory

by an angle %uT eastward while the bob is swinging out, %uT westward

while it is moving back.

Foucault’s experiments of 1851 and those of his countless successors
yielded only qualitative results; a quantitative investigation of all sources
of error was carried out by H. Kamerlingh Onnes, later leading authority
in the field of low temperatures and discoverer of superconductivity, in
his Groningen thesis of 1879.

§ 32. Lagrange’s Case of the Three-Body Problem

We cannot resist the temptation to conclude our analysis of relative
motion with the proof of a famous principle enounced by Lagrange (Paris
Academy, 1772): The three-body problem can be solved in closed and elementary 4
form if one assumes that the triangle formed by the three celestial bodies always 3
remains similar to itself. The masses of the three bodies are completely S
arbitrary. , |

The proof of this principle will show that !

1. The plane through the three mass points is fixed in space. 3

2. The resultant of the Newtonian forces on each of the three points §

passes through their common mass center. ‘

3. The triangle formed by them is equilateral.

4. The three points describe conic sections similar to each other,

with the common mass center at one focus.

The proof given by Lagrange is rather involved. It can be simplified
if, with Laplace, we assume from the start the first conclusion above.
Carathéodory! has, however, shown that even without this assumption an
elementary proof is possible. His starting point is our vector equation (29.4) 7%
resolved in orthogonal coordinates. We shall follow his proof with minor
modifications.

We consider the plane S which passes through the three points Py,
P,, P, (masses m,, my, mg) and therefore also through their center of mass 0.
Without spoiling the generality of the problem we can define the latter
as being at rest. S therefore rotates about the fixed point O; this rotation
includes a component causing S to turn into itself about its normal at 0. E
Call « the total angular velocity. We imagine ourselves to be located on -
a frame fixed in § from which we observe the motion of the points Py, in &
way similar to that in which we observed the motion of Foucault’s pendulum g8

e

L Sitzber. bayer. Akad. Wiss., Ménchen. 257 (1933).
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om the earth. From O we measure the radius vectors ry, to the points Py

fr

v, and ‘%’9 are their velocities and accelerations as observed from §. Making
o

use of the vector rule (24.7), we write down the differential equations (29.4)

of the motion in the form
f{‘lc+2mxv Fo(r, * 0)—Tpw? - oXr,= ¥
(1) dt k % K E=
Fy, is the vector S of the Newtonian gravitational forces acting at my.
Thus, for example,
,—F—lz Gm, Iry,—T, G mg r,—Try
(2) e ll‘z—rliz 1r2“r1| lra_rll2 ]rs'_rll

We fix a Cartesian coordinate system in S, with origin at O, and x, y, arbi-
trarily oriented, in the plane of §; at O we erect the z-axis perpendicular
to §. In Eulerian fashion we resolve » along these axes,

(3) o= (w;, wy, wg).
Let the component w, (rotation of § into itself) be determined by considering

—
the direction of one of the vectors OP, fixed in S. But we assumed that

the triangle P, P,P; was to remain similar to itself; it follows that each
—
of the other two vectors OP; as well has a direction fixed in S. We can

then write
(4) r,=A(t) (@ by O),

where a,, b, are the Cartesian components of P, at some given initial time.
The function A(f) determines the common change in scale of the vectors

—
OP, and hence also that of the triangle P, P,P;: with A and A the
derivatives of A, we obtain from (4) that

Vi =Alt) (ag, by 0),

d
TE=X(1) (@ by, 0)-

(4a)

It further follows that the resultant force F, of Eq. (1) has a vanishing
z-component, and z- and y-components inversely proportional to A% We
shall write this force in abbreviated form as

(5) Fr_ _1
my, TTOAR(E)

(Lk’ Mks 0)

Next we write down the z-component of Eq. (1) perpendicular to S,

2A(m1bk— w2ak) + Awa(akw1+bkw2) T A(wlbk— d)zak) :O?
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or, factoring out ay, by,
(6) {2 X gt A wg wy— @3)} @p+ {2 X w1+ A(wy wy+ @)} b =0.

The two brackets { } are functions of ¢ independent of k. Calling them ;
f(t) and g(t), we obtain

f(t) by
(6a) o=k

collinear. The three ratios b/a must therefore be unequal. In that case we
can satisfy (6) only by putting f=g=0. Explicitly

2 Ay = — M wywy -+ o),

2AW2: )\(w3w1~ (Uz)

(7

Multiplication by ; and w, respectively, followed by addition, yields

_2_/\_ o Wy W T Wy Wy
A Wyt w,?
and, by quadrature,
C . ; P
8 wl4 w,2= ;¢ C=constant of integration. %
1 2= ¥ & s

We proceed to write the x- and y-components of the differential Eq. (1). r
They are 4

./\.a,k -2 w3}\bk—|—w1)l(ak wy by ws) — Adp (WP w4 ws?) — wyA by = i—f’

Abg+2 wgday+ wy Aay w+by wg) — Abp (0 P+ w? + w5?) + wg A= A_Zk’

or, arranged in factored form,

A= Aarg+ wg?) }a,— {2 wg At A (— wy @yt ) b= 557

(9) . | ) ”
{203 A4 X (0 wytaog) Yay+-{ A= A2+ wg?) }b, = 5%

The brackets { } of the first equation and similarly those of the second,
when multiplied by A%, must therefore each satisfy three linear equations 4
with constant coefficients (independent of ). This is possible only if they
are themselves constant. It follows that the difference of the first and fourth 8
brackets and that of the third and second brackets each equal a constant
divided by A2. We then have -

(10) w?— wyt= a8’ 2wy wy= 5y
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A guitable consolidation gives

(wy £ twg)?= A%:B
om which the absolute magnitude

ot wd= D D=(A24B

fr

(11)

is obtained. A comparison with (8) would lead to

C
(112) A= D= const,

anless both € and D were to vanish. Now according to (10) A= const.
would make both w, and w, constant, so that, from (7), w; would have to
be zero. By suitable choice of the coordinates z, y one could even make
w,—0; the first Eq. (9) would then yield L;=0. In that case the three
points P, would have to be collinear, contrary to our hypothesis.

We must therefore put C-=D=0 and obtain from either (8) or (11) that

(12) wy = wy=0.

This proves statement 1, that the plane 8 rotates with angular velocity wy wnto

stself; its normal is fixed vn space.
If we apply the equation of angular momentum to our system we see

that the motion of the points m, within the plane S cannot contribute to
the areal velocity constant. This constant is hence directly determined by
the angular velocity w, of §. We must have

const. = wgzmk |} = ws)@zmk (a3-+b7).
For this we can write

(12a) A2 W=y (y= constant);

it follows that

(12b) 2 A wyt-A% @iy =0.

By virtue of (12) and (12a, b) Egs. (9) simplify to

13 2y _ v _Lg_ My,
( ) A)\ /\wakﬂbk

The requirement %:ﬂg—l contained in them says that the moment of F,
1 1

about 0O vanishes, for

- ‘
1) r1xF11l=X§(a1M1"“b1L1)=0:
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so that F, passes through the mass center 0. The same holds for F, anq

F;. This is our assertion 2 which states that the resultant of the forces acting at

P). passes through the mass center of the particles my,.

We can make use of (2) to write (14) more explicitly. We have at once f:i

rixF, myryxr, mgrixry
(15) m G |ry—ry? + |ry—r,|? =0.

But from the definition of the mass center,
(16) My Ty +MyTyt-mgy=0,
and therefore

Mol XTy4-M3T XTa=0.

Substitution into (15) yields

mzrlxrg( ! 1 )=0,

!ra_‘r1|3m |ry—r,|?

that 1s,

(17) [Pp— 1y = [rg—1y.

Similarly we find

(17a) |ty ry|=|[r;—r,], ete.

We have thus arrived at statement 3: the triangle is equilateral.

The quotients % and i—%" occurring in (13) can each be determined.

To this end, let us call As the side of the triangle, where
§2= (ay— a3+ (by— by)2 = (23— @y)2 4 (by— bg)? . . .
According to (2) and (5) we then have
% = %{mg(az— @)+ my(a;—ay)}
and, in view of (16),

(18) : Ii’=£i{—m1—m2—m3}.

1231

The right member of this equation is symmetric in the m;, and the coordinates

ay, by; 1t therefore represents the value not only of 5—5 but of %: and
1
also of %:‘ Substitution of this value in (13) yields

(19) Xa— X = — &omfmytmy).

i
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This differential equation in A describes the motion in time, i.e., the thythm
h which our equilateral triangle alternately expands and contracts.
There i, however, a simpler way to gain insight into this secular
motion and at the same time into the form of the trajectories; we abandon
the plane & and observe the motion from a plane 8’ coinciding with 8, but
fixed in space. Tn 8’ the only force acting on the mass pomnt m, is the
resultant force F, directed toward the mass center which is at rest; the
fictitious forces (Coriolis, centrifugal, ete.) occurring in (1) drop out. From
(5) and (18) the magnitude of Fy, is

wib

9 pn?t
: ¢ +52
(20) |Fk|: ﬂ;? (L2+M%) = ﬂ%;c? (m1+m2+m3)m’ﬂ_‘gi .

The only quantity in the right member that varies in time is A%, With the
help of (4) it can be expressed in terms of [rgl,

A2~ lrklz .

o ag+bg
Let us replace A by this value in (20), define a new mass

R 2 bz:
(20a) mkzmk(f"—:s i)

and the total mass M =—m,-+my}-ms. Instead of (20) we then obtain

my, MG
el == T
Each of our three mass points hence moves in space independently of the
others, as if endowed with a mass m;’, and attracted to a mass M at rest
in O in a Newtonian manner. It therefore describes a conic section with one
focus at O.

In order to be able to say something about the magnitude and mutual
position of the three conic sections we must take into account the initial
conditions implicit in the state of motion we have postulated. Let us for

eXample consider the instant at which A= A, when the distance

(21) Aexie(a+03)*

Pf &11_ the my, from O is an extremum. According to (4) the radial velocity
In S is then equal to zero; the velocity in §’, i.e., in space, is given by the
;:?;POHG;I’E ;;3 of angular velocity multiplied by the distance (21); the
not (())r f'%’k—i-bk)* .oc.cvtlrring in. t.his distance is thus a measure of the similarity
Centei-l }b of the initial velocities and initial distances from the common mass

» but at the same time of the size of the three conic sections resulting
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from these initial values. With this, statement 4 is established. The positiong
of the three conic sections are distinguished by the angles which the threg

—_—
radius vectors OP,, form with each other.

In the special case m,=my=m,, where the mass center coincides with
the intersection of the medians of the equilateral triangle, the conic sectiong
are congruent and displaced by 120° with respect to each other.

In addition to this motion in conic sections there is, according to
Lagrange, a class of motions expressible in elementary form in which the
three bodies are located on a rotating straight line. However we do not -
wint to go into this here.

Let us finally point out that from the specialized three-body problem
of Lagrange one can pass to a correspondingly specialized n-body problem.
In the case of #» equal masses and suitable initial velocities one then obtains

e

n congruent Kepler ellipses, which are displaced by an angle -25 with respect

to each other and traversed in the same rhythm. At one time this mode
of motion was temporarily advanced for electrons to explain the L-spectra
of X-rays [Physikal. Zeits. 19, 297 (1918)].




CHAPTER VI

INTEGRAL VARIATIONAL PRINCIPLES OF
MECHANICS AND LAGRANGE’S EQUATIONS FOR
GENERALIZED COORDINATES

§ 33. Hamilton’s Principle

We have already met a variational principle of mechanics, that of
d’Alembert. This principle compares the state of a system at any given
arbitrary instant with a neighboring state obtained from it by a virtual
displacement. The principles which we are about to consider are integral
principles. They differ from the former in that we shall be concerned with
the successive states of the system during a finite interval of time, or, what
amounts to the same thing, over a finite section of the trajectory. These
states are then compared with certain corresponding virtual neighboring
states.

The different integral principles with their various names are disting-
uished by the way in which the correspondence between the original states
and their neighboring or varied states is established. They all have this
in common: the quantity to be varied has the dimensions of action. They
can therefore all be collected under the name ‘ principles of Least Action'.”

While power, as we already know, is a quantity of dimensions Energy X
Time™, action has dimensions Energy X Time. An example of this is the
elementary quantum of action, or Planck’s constant, which we shall encoun-
ter in § 45, i.e., the quantity

h=6.624 - 10727 erg sec.

We shall first deal with Hamilion’s principle. It differs from that of
M&UPertuis, to be treated in § 37 (though historically the latter came first),
n that here the time is not varied. This means that the system arrives at any
given point of the actual trajectory, of coordinates z;, at the same time as at
the corresponding point of the varied trajectory, of coordinates -+ 8xy.
The following statement sums up this property of Hamilton’s principle:

(1) 5t—0.

1 3 - - . »
I“dEn_ghsh-speakmg countries this usage is not common. We shall hence at once
Istmguish Hamilton’s principle from the principle of least action (sometimes
called the Principle of Maupertuis).—TRANSLATOR,

181
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We must remark at this point that when we speak of the trajectory §
or path of the system, we do not mean the trajectory of a point of the 3
system in a space of three dimensions, but rather a curve in a space of many 3
dimensions, characteristic of the motion of the system as a whole. Thus,
in the case of f degrees of freedom, this curve lies in the f-dimensional space
of the coordinates ¢, . . . g, (cf. p. 48).

In addition to the condition (1) we demand that another restriction be
imposed on the variations in Hamilton’s principle; the end points O and P
of the section of the trajectory under consideration and of its varied neigh. -4
boring trajectory must coincide in space. Hence we have, for any }
coordmate z,

(2) dx=0ati=t,and at t=1¢,.

The adjoining figure has been drawn to aid in visua-
lizing symbolically, in three dimensions, the relation
of the actual path (solid) to the virtual one (dashed).
The displacement 8¢, resulting from the variations of
the coordinates dz, is to be completely arbitrary except
at the two end points, with the restriction that éq be
continuous and differentiable in . There is a one-
to-one correspondence between any point on the real
path and one on the varied path, obtained from the
former by a displacement 8¢, and two such points .
. Fic. 51. Variation of
belong to the same time ¢. . .
. . , L. the * trajectory ™ in 4
We shall now derive Hamilton’s principle. We  gamilton’s principle. = §
start out with the form (10.6) of d’Alembert’s principle, The time is not varied.

(3) { (myx, —X;)8x,+ (’m,{yk Y1) 0y (m 2y, Zk)ggk}_._o_

i [\/]:

We therefore consider a system of »n discrete mass points which may, how-
ever, be coupled by either holonomic or non-holonomic forces of constraint
of unspecified nature. It follows that the 8z;, 8y, 825, which must of course
satisfy these constraints, are not independent of each other; in the holo-
nomic case of f degrees of freedom only f can be chosen arbitrarily. In
the non-holonomic case they are related by differential conditions.
We shall at first take up a purely formal transformation of relation (3), 3§
by writing E

- a . .od

where we shall at once ask ourselves what the meaning of an expression
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such as %(Sxk) is. For this purpose we compare not only the actual path

of the 7, with the virtual path of the x; 38z, but also the velocity z, along
the actual path with the velocity &, +6x; along the virtual path at the same
instant t. The latter velocity is defined by the identity

S dn) =+ (5.

We equate these two ways of writing the varied velocity and obtain
(8) %(8%)289‘71:-

Let us introduce this result into (4),

(6) 8= () — Sy = (3, ) — 38 ().

Similar equations hold of course for the coordinates y, and z;. Hence (3)
can now be written in the form

&S S B hd2)
)
Z%S(¢%+y’%+.z%)+ Z(Xkak+ Y 8y +Z;62;,).

The second term on the right is nothing else but the virtual work I, that
is, the work done by the external forces in our virtual displacement. On
the other hand, the first term on the right is the variation of the kinetic
energy T given by

T3 @R+ 2D)

which occurs when we pass from the real to the virtual trajectory. Eq. (7)
can therefore be simplified to

d< . _ _
®) Etzmk(kaka{‘ykSyk—{—szZk):BT-{—S W,

Before deriving some further conclusions from this, we shall digress for
& moment to make some remarks about the relation (5). Let us write it
down once more, in the form
{4 4 su5%2.
) dts yadt

If we recall that ¢ is not varied, and that 6{=0 implies 3dt=0, we can
Tepla-ce (9) by

(98_) déx  ddx

=@ Or also déx—ddx.
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Eq. (9a), especially in the recond form dé=28d, plays a fruitful if somewhgy,
mysterious role in the older calculus of variations of the Euler type. We 4
note that (9a) really says the same thing as the somewhat trivial Eq. (5)
relating the time derivative of the virtual displacement to the virtua
variation of velocity, except that (9a) contains the two assumptions that §
the time is not subject to variation and that the virtual displacement js §
continuous. 3

We now return to Eq. (8) and integrate it over ¢ from ¢; to ;. The
left-hand side vanishes because of (2) and we are left with

T

(10) f " STLSW)di—0.

2

Owing to the type of variation embodied in Hamilton’s principle, this can
also be rewritten as

£y t
(11) af porf SWdt=0.
te iy

It would, however, be erroneous to replace the latter integral by & f W dt;
for while it is true that the virtual work 8W and the amount of work done
m dt, i.e., dW, have a well-defined meaning, this is not so for *he work W
itself. W is, in general, not a “ state variable.”” 1t is a state variable only
if dW is a perfect differential, that is, if the external forces satisfy those
conditions which guarantee the existence of a potential energy V {cf. § 6,
(3)]- In that case we can replace

faWdt by —fsm:mafvczz

in Eq. (11), which then takes the classically simple form

(12) s v)di=o.

ty

This is the equation one usually thinks of when one speaks of Hamilton’s -3
principle. It is valid, according to the statements of p. 46, for conservativé
systems. We can call equation (11) Hamilton’s principle gencralized to
include non-conservative systems. :

We now claim that Egs. (12) or (11), respectively, contain the sum-
total of mechanics, just as does d’Alembert’s principle. This emphasizes ;-
the special significance of the energy-like expression 77— V. In mechanics 3
it is called the Lagrangian function (or Lagrangian, for short) and takes
Eq. (12) into

ty
(13) 8f Ldt=0 where L=7-V.
L1
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cords, the time integral of the Lagrangian ts an extremum. Helmholtz
In.‘d heavily on the variational principle in Hamiltonian form in his last
rehe],;s- he e;(tended it to electrodynamics, and called L tke kinetic potential.
Wﬁr nzlme “ free energy,” as opposed to the “ total energy ” 7'4-V, would
rlfe E;qually justified in view of its wide use in thermodynamics.

Hamilton’s principle derives special value from the fact that it is totally
independent of the choice of coordinates. In fact, T a,pd V (as well as W)
are quantities of immediate physical significance, which can be expressed
in any desired set of coordinates. We shall make use of this property in
the following section.

Hertz was of the opinion that Hamilton’s principle was valid only for
holonomic systems. This error was corrected by O. Hélder (Gottinger
Nachr. 1896}

Hamilton’s principle goes counter to our need for cause-and-effect
relationships, as do all the other variational principles involving action
integrals. For here the sequence of events is determined not by the present
state of the system, but is instead derived under equal consideration of
both its past and future states. It seems then that the variation principles
are not causal, but rather feleological. We shall come back to this point
in § 37, where we shall deal with the historical origin of the principles.
There we shall also briefly touch on the conversion of Hamilton’s principle
into forms useful in fields of physics other than mechanics.

§ 34. Lagrange’s Equations for Generalized Coordinates

Let us consider an arbitrary mechanical system. We shall for the
present assume that its parts are coupled by holonomic conditions only.
The number of degrees of freedom of the system is f. We can then introduce
J independent coordinates which determine the position of the system at
any given instant. We shall call them, as on p. 49,

- 915 925 - - - Gy

These are our position coordinates. To them we add the * velocity
coordinates

1 o .
tha) 91> 9o - - - Gy,
'ilnh: 9 and g together completely specify the state of the system at any
stant,
L

. et us be more explicit : let the system be described for the moment
L:Ztn >f coordinates ,, . . .z, which need not necessarily be Cartesian.
%~ f conditions hold between them, of the form

& Fr(xy, xp, .. 2,)=0, k=f+1,f+2,...n



186 Integral Variational Principles of Mechanics

We can then define g, as some function Fy of z,, . . . ,,

(2&) Fk(xl, 352, PR xn)IQk, k=1, 2, . e .f.

Let us denote the partial derivatives of F, with respect to z; by Fo: a
differentiation of (2) and (2a) with respect to ¢ then gives E

> . Tps £=1 Ca
2b) Shuten ) s= {0 r
We can calculate from this the &; as linear functions of the g, with coeffi.
cients that depend on the x,, . . .x,, or, by virtue of (2) and (2a), on the p
¢1, - - - g5 The kinetic energy 7', a homogeneous quadratic function of the
z;, just as it would be were 1t expressed in Cartesian coordinates to begin
with, again becomes a homogeneous quadratic function of the ¢, with
coefficients that depend on the g;. For the present we shall postulate that
the potential energy V is a function of the gy only, without, in principle,
excluding the possibility of later making V a function of the ¢, as well.
In this connection we may now complete the definition (33.13) of L by stating
that

s

L is to be regarded as a function of the q;, and gy.

For the time being we shall exclude an explicit dependence of Lont. E

Tt is in this sense that we now write down the variation of L, 1e., the";-,
difference between the values of L in the virtual varied state gg+8¢k
.87, and in the original state gy,

oL oL -
(3) SL:Z@—R 6gr+ zgg—k S
P i

This variation is now introduced into Hamilton’s principle -_15';

i R i

t
(3a) f S Ldt—=0.

ty

This form differs from that in (33.13) in that we have written the variation
under the integral sign, whereas we had previously put it in front. The
two forms are, of course, equivalent by virtue of rule (33.1), which say® .3
that ¢ and dt are not varied. In any case, Eq. (3a) corresponds to the 4
formulation (33.10) in which we first encountered the principle.

We now carry out the integration over the time indicated by (3a) o2
the general term of the second sum of (3). For this purpose we alter
form of this term by a partial integration, a procedure which has bee
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v1.34
har&cteristic of the whole calculus of variations ever since Euler2:
¢
bal o 5. (8L d oLy I [%aeL
(4) J,@Sq"dt— t @gﬁ%dtda—ﬁﬁ%\t— , &@CSdet.

In the last member of this double equality the first term vanishes because

of the conditions laid down in (33.2). The complete expression (3) for 8L

therefore yields

h _ " (d el oL
(48) ftn 8Ldt—-Aft°%(gt@%@)Sdet—O.

Now the 8¢, are independent of each other. We can therefore make all but
one of them zero. This one we can also make zero everywhere along the
« grajectory ~* of Fig. 51 except in the neighborhood of a single point, or,
what amounts to the same thing, during a time interval 4t at an arbitrary
time £. In order to satisfy (4a) we now require that

d oL oL
(5) (Fi57.— @)f )
At

But 4t is finite, and 8¢, does not vanish during the interval 4¢. Hence
we must have, for any time ¢ and any index £,

d al. oL

© @t~ oo ="
These are Lagrange's equations for generalized coordinates, or, as they are
also called, Lagrange’s equaiions of the second kind, specialized to the case
so far considered in which the forces acting on the system have a potential
and the internal constraints of the system are holonomic.

If one or the other of these assumptions is dropped, we arrive at an
extended form of these equations; let us hence consider two cases.

Thf.: first case is that in which the forces are not derivable from a
fgtsntlal. In that case the form (33.11) of Hamilton’s principle will have

€ our starting point. We think of the virtual work 8W of the external

fi  ox . . .
tt())rces.taa expressed in terms of the virtual displacements 8¢, and are led
0 Write

7 W = Q) g

T — .

2 - _
In general we

£ deg use the 'term ‘*“ Kuler's equation ” .of &.1 given variational problem

typie;ug::ti an ec'luatllon of type (6), and. t,h? derivation of (6) from (4) and (5) is

oro S'a t; e derwatlon, of Eule.r’s equation in any such problem. We can there-

Problen?z at Lag.mnge s equations are the Euler equations for the variational
characterized by the function L,
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We can then define ¢, as some function Fy of 2, . . . @,
(2a) Fp @y, Tgy o .. 2p)=qp k=1, 2, .. ]

Let us denote the partial derivatives of Fj with respect to z, by F; a°
differentiation of (2) and (2a) with respect to ¢ then gives ' '

. .
o gk’ k:]., 2, . e .f o
(2b) 2 Fig (@ - oo ) 3= {0, k—ft1,...n.

i=1

We can calculate from this the #; as linear functions of the gy, with coeffi- 3§

cients that depend on the z,, . .. x,, or, by virtue of (2) and (2a), on the §
¢1 - - - ¢ The kinetic energy 7', a homogeneous quadratic function of the
#,, just as it would be were it expressed in Cartesian coordinates to begin
with, again becomes a homogeneous quadratic function of the ¢, with
coefficients that depend on the g;. For the present we shall postulate that
the potential energy V is a function of the g only, without, in principle,
excluding the possibility of later making V a function of the g, as well.
In this connection we may now complete the definition (33.13) of L by stating
that

/-

L is to be regarded as a function of the q;, and g

For the time being we shall exclude an explicit dependence of L on Z. !

Tt is in this sense that we now write down the variation of L, ie., the
difference between the values of L in the virtual varied state g+ 8¢ b
{187, and in the original state g;, g;: ‘

oL oL .
(3) SL:Z@ Ogy+ ;gq—k 6
"This variation is now introduced into Hamilton’s principle

t
(3a) f SLdt—0.

f

This form differs from that in (33.13) in that we have written the variation 3
under the integral sign, whereas we had previously put it in front. The
two forms are, of course, equivalent by virtue of rule (33.1), which says ?__
that ¢ and df are not varied. In any case, Eq. (3a) corresponds t0 the
formulation (33.10) in which we first encountered the principle.

We now carry out the integration over the time indicated by (3a) oP
the general term of the second swm of (3). For this purpose we alter the
form of this term by a partial integration, a procedure which has bee

a3 e
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eristic of the whole calculus of variations ever since Euler?:

b oL .. " oL d aL . * (h"ad oL
Lo gi—= | 222 sq di=22 6 \_ a 2L ,
fruaq’f 0q 31, Tr aq;, °1k . & @ Oqy, dt

charact

4)

n the last member of this double equality the first term vanishes because

f)f the conditions laid down in (33.2). The complete expression (3) for oL
therefore yields
b "< (d 8L oL
8L = - JLET o =),
(4a) ft‘, dt ft, zk: (dt S 8q}g)8q;c dt=0

Now the &g, are independent of each other. We can therefore make all but
one of them zero. This one we can also make zero everywhere along the
« trajectory ” of Fig. 51 except in the neighborhood of a single point, or,
what amounts to the same thing, during a time interval 4¢ at an arbitrary
time ¢. In order to satisfy (4a) we now require that

d aL oL
At

But 4t is finite, and 8¢, does not vanish during the interval 4. Hence
we must have, for any time { and any index %,

d oL oL

© G e oo
These are Lagrange's equations for generalized coordinates, or, as they are
also called, Lagrange’s equations of the second kind, specialized to the case
80 far considered in which the forces acting on the system have a potential
and the internal constraints of the system are holonomic.

If one or the other.of these assumptions is dropped, we arrive at an
extended form of these equations; let us hence consider two cases.

Tht? first case is that in which the forces are not derivable from a
EOtEntlal. In that case the form (33.11) of Hamilton’s principle will have
© be our starting point. We think of the virtual work W of the external

fi . , . .
t?)rces'ta.s expressed in terms of the virtual displacements 8¢, and are led
) Write

(7)

Tm——
.

W = Qy g

2 I B — .
N gen ’ . . .
general we use the term *‘ Euler’s equation > of a given variational problem

:;’p(}(f:;gn: te an ‘—‘fluat.ion of type (6), and the derivation of (6) from (4) and (5) is

o ;a of the derivation of Eule.r’s equation in any such problem. We can there-

probl ¥ that Lag}:-a,nge’s equations are the Euler equations for the wvariational
em characterized by the function L,
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We shall call the coefficients @, here introduced the generalized components
of force associated with the coordinates ¢,. This is a formal extension o
the force concept, which is of course admissible as a mathematical definition
Furthermore it is quite useful. Thus we can now restate the definition o
the moment of a force about an axis given in (9.7) as follows: the momen
of a force is the generalized force associated with the corresponding ang]
of rotation. It is clear that the quantities @, defined in (7) no longer possess
vector character, nor need they in general have the dimensions of dynes
any longer. ¥rom (7) it is seen that their dimensions depend instead on
the dimension of the associated g¢,. Thus moments of force must, as we
already know, have dimensions of work, hence ergs, for the associated &g :
are angles and therefore dimensionless. 9

If we now introduce (7) in (33.11) and carry out the transformations 3
indicated by Egs. (4) and (5), we clearly obtain, in place of (6),

o A 2R 1 v ety

d eT T
(8) & qn  oan

= Q..

We can write this in a somewhat more general form as

d oL 2

(8a) S~ o=
This is more general because now we can take into account the case where-
some of the forces acting are derivable from potentials, others not. We
need only write the @, corresponding to the latter type of forces on the:
right side of (8a). The potential energy of the former, on the other hand,:
can be combined with the kinetic energy 7' to form the Lagrangian L
of (8a).

Eqs. (8a) are then the Lagrange equations for forces some of which are:
not derivable from potentials.

If now we drop the second of the previously stated assumptions, 1.€., g
postulate that the constraints of the system are in part non-holonomic, the
introduction of the coordinates g is made invalid. For by definition non-.
holonomic conditions cannot be put in the form (2) and hence cannot be:
eliminated by proper choice of the ¢. We are then forced to introduce an
excessive number of g, that is, a number greater than the number of degrees.
of freedom for infinitesimal motion. The latter is f—r where f is the number 3
of degrees of freedom for finite motion and r the number of non- holonOIIllc

conditions. These can be written as virtual conditions in a form s1m11&1‘
to Eq. (7.4), 1

f
(9) Z‘Fk,u'(ql’ - gf)8qk=0, P.Zl, 2, ..W. T
k=1
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They imply & restriction on allowable variations 8¢,. One takes this
restrict-ion into account by multiplying each of the Eqs. (9) by a Lagrangian
multiplier Ap and then adding it under the integral of (33.13). One obtains,
with the F in somewhat abbreviated notation,

¢ 7
f (SL—{_z_A[LFk# 3%:) dt=0.

£ Presst

The Eulerian transformation proceeds as in (4), where instead of (4a) we
obtain

.
(10) ﬁl;(%%_ %ﬁ S A#Fk#)Sgkdt.
0 #

Here the 8¢, are no longer independent of each other, but are connected
through relations (9). One can, however, argue as on p. 67: of the bracketed
() coefficients of 8¢, in (10), » can be made to vanish by a suitable choice
of the A,. In the remaining sum over k, only f—r of the gy, all independent
of each other, are left. The same line of reasoning as after (5) now forces
us to the conclusion that the remaining brackets must vanish, too. We
then obtain the complete system of f equations,

d oL oL ’
(11) &g, B z Ay Fpy.
B=1

We can designate these as Lagrange’s equations of the mixed type, since they
fall halfway between Lagrange’s equations of the first and second kind.

We may mention that this mixed type occurs not only when we are
unable to eliminate some of the conditions (case of non-holonomic con-
straints), but also whenever we do not wish to eliminate them. For it can
happen that we are interested in the force of constraint that a holonomic
condition exerts on the system. This force, as it turns out,.is represented
by the A, associated with the condition in question [just as in Eq. (18.7)
dealing with the spherical pendulum], and can be obtained by integration
of Eq. (11).

Evidently we can finally combine the types (11) and (8a), for the case
that we simultaneously drop both assumptions stated after (6).

Instead of doing this, we shall lastly concern ourselves with the following
Question: how and under what assumptions can the principle of the con-
Servation of energy be derived from lagrange’s equations (6)?

As already emphasized, above Eq. (3), L is a function of the g; and the
9x; we further require, as earlier, that L not coniain t explicitly. In that
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We shall call the coefficients @, here introduced the generalized components ¥
of force associated with the coordinates g;. This is a formal extension o
the force concept, which is of course admissible as a mathematical definition
Furthermore it is quite useful. Thus we can now restate the definition of
the moment of a force about an axis given in (9.7) as follows: the moment '
of a force is the generalized force associated with the corresponding ang
of rotation. It is clear that the quantities ¢, defined in (7) no longer possess
vector character, nor need they in general have the dimensions of dynes
any longer. From (7) it is seen that their dimensions depend instead on :
the dimension of the associated g,. Thus moments of force must, as w
already know, have dimensions of work, hence ergs, for the associated 8gq, -
are angles and therefore dimensionless. b

If we now introduce (7) in (33.11) and carry out the transformations
indicated by Egs. (4) and (5), we clearly obtain, in place of (6),

B R R

dof oT
®) @agy a0k

We can write this in a somewhat more general form as

d eL 2
(82) Wi o
This is more general because now we can take into account the case where
some of the forces acting are derivable from potentials, others not. We:
need only write the @, corresponding to the latter type of forces on the
right side of (8a). The potential energy of the former, on the other hand,
can be combined with the kinetic energy 7T to form the Lagrangian L
of (8a).
Egs. (8a) are then the Lagrange equations for forces some of which are.
not derivable from potentials.
If now we drop the second of the previously stated assumptions, i..,:
postulate that the constraints of the system are in part non-holonomic, the'
introduction of the coordinates g is made invalid. For by definition non-
holonomic conditions cannot be put in the form (2) and hence cannot be
eliminated by proper choice of the ¢. We are then forced to introduce an
excessive number of g, that is, a number greater than the number of degrees
of freedom for infinitesimal motion. The latter is f—r where f is the number 3§
of degrees of freedom for finite motion and r the number of non- holonomie.
conditions. These can be written as virtual conditions in a form sumll&l‘-f
to Eq. (7.4),

f
(9) ZF’C#(QI’ PR qf)sqk=0, p.:l, 2, P &
k=1
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They imply @ restriction on allowable variations 8¢,. One takes this
restriction into account by multiplying each of the Eqgs. () by a Lagrangian
pultiplier Az and then adding it under the integral of (33.13). One obtains,
with the F in somewhat abbreviated notation,

N 7
f (SLAD ApFyep 8qy) dt=O0.

fo et

The Eulerian transformation proceeds as in (4), where instead of (4a) we
obtain

,
41 d oL oL

(10) L%(a@_ 2 > N Fy) Sa .
0 2

Here the 8¢, are no longer independent of each other, but are connected
through relations (9). One can, however, argue as on p. 67: of the bracketed
() coefficients of 8g;, in (10), » can be made to vanish by a suitable choice
of the A,. In the remaining sum over k, only f—r of the gy, all independent
of each other, are left. The same line of reasoning as after (5) now forces
us to the conclusion that the remaining brackets must vanish, too. We
then obtain the complete system of f equations,

d 8L 8L ’
=1

We can designate these as Lagrange’s equations of the mized type, since they
fall halfway between Lagrange’s equations of the first and second kind.

We may mention that this mixed type occurs not only when we are
unable to eliminate some of the conditions (case of non-holonomic con-
straints), but also whenever we do not wish to eliminate them. For it can
happen that we are interested in the force of constraint that a holonomic
condition exerts on the system. This force, as it turns out,.is represented
by the A, associated with the condition in question [just as in Eq. (18.7)
dealing with the spherical pendulum], and can be obtained by integration
of Eq. (11).

Evidently we can finally combine the types (11) and (8a), for the case
that we simultaneously drop both assumptions stated after (6).

Instead of doing this, we shall lastly concern ourselves with the following
Question: how and under what assumptions can the principle of the con-
Servation of energy be derived from Lagrange’s equations (6)?

As already emphasized, above Eq. (3), L is a function of the g; and the
9x: we further require, as earlier, that L not contain ¢ explicitly. In that
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case Kq. (3) is valid not only for the virtual changes 8¢, 8¢, but also fop :
the secular changes dg, dg, so that we have

(12) Z kaqk+z kaqk

On the other hand we emphasized at the same place that 7' is a homo.
geneous quadratic function® of the ¢;. We can therefore apply the Euler
rule

(13)

b
N
f
M
§'
S13

for homogeneous functions. Differentiation with respect to the time gives :
dT . d aT
(1) 2 = 2 edog,+ 2k,

We now subtract (12) from (14). Because L=7—V, the left member :
becomes ]

@ Tar

On the right the second terms cancel provided V is independent of qp.
that case, by means of Eq. (6), the first terms on the right cancel as Weﬂ
so that we obtain

av
(14:&) dt + dt =0

from which we conclude that

(15) T+ V=E.

Rl st < i e

The law of the conservation of energy is therefore a consequence of Lagrange's 3
equations. ’

We must now examine the assumptions leading to this important
conclusion,

a) From the meaning of 7' we can say that the kinetic energy is deter-
mined by the position and velocity of the system, hence by g and ¢; T could
depend on ¢ explicitly only as a result of the elimination of the equations

* Even when this is not the case and L is instead assumed to be any desired functiont

of the g, and ¢, a generalized conservation law of the form H = Z awq i — L =const.

can be given, In Chapter VIII we shall call the function H thus defined the
“ Hamiltonian »*; the conservation law contained in Eq. (15c) is a spocial case
of the above equation.
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of constraint, in case the latter depend on ¢ % Now we have already seen
on - 68 that such constraints do work on the system, and therefore upset
the conservation of energy. It is then indeed necessary for the validity
of the conservation law that 7' not contain the time explicitly.

b) The assumption that L does not depend explicitly on ¢ therefore
reduces to the assumption that V is independent of {. This condition, too,
ig ecessary. Otherwise one would have to add the term

av
T o

on the right side of Eq. (12). This term would then reappear with opposite
sign in the right-hand member of Eq. (14a). Instead of T'-{-V=const. we
should then obtain

(152) G@+N=%

that is, the law of the conservation of energy would be invalidated.

¢) Suppose that ¥V depends not only on the g, but also on the g,.
With the aid of (6) we obtain as the difference of the right members of
(14) and (12)

, . dav LoV d~c . oV
(15D) ZQk@@+Z%@—aZQk@
This case does lead to a conservation law, which has, however, the unfamiliar
form
(15¢) T-+V— Zq 2V _ const.
k &gy,

One more conclusion can be drawn from the above which will be useful
to us later, 'We shall calculate L—2T= — (T V), by using the expression
(13} for 27" and reverting to the assumption that V is a function of only
the 7;- We then arrive at

CTHAV LS g =L S g

dqy 7
or
(16) R
T+V=>q 2
The total enerqy T--V can be calculated from the expression for the
Lagrangian

4 g . i . - = -
Sometimes such time-dependent conditions are called rheonomous (fluid) as opposed

to time-independent conditions which are characterized as seleronomous (fixed,
rigid),
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The rather abstract developments of this section will come to life w
the examples of the following section. To prepare ourselves for these
shall specialize the two expressions

oL oL

— and —
99k a9y

occurring in (6) for the simplest case, the motion of an isolated mass poin
expressed in Cartesian coordinates x, y, z. We have

moe oL 8T .

T — 3 (22921 22), %= 2 MY, ete.
oL oV _y i
ox —  ex ete. 4

the force, we shall label the two terms resulting from %—‘;’ as g-components *

of generalized force, rE

8T oV aoT :
e — Q.

17 20" 70 or

@ is an external force as in Eq. (7), whereas g is a fictitious Lagrange force .

dependent on the way in which the g coordinate varies with position. In ;
the case of Cartesian coordinates x, y, z where curves of constant g are :
parallel to each other, a given g; is independent of the g; (k#1%) and the
fictitious force vanishes.

A RV T Y

§ 35. Examples Illustrating the Use of Lagrange’s
Equations

We have chosen examples which were treated earlier by elementary
methods, in order to demonstrate the superiority of the Lagrange formalism.

(1) The Cycloidal Pendulum.

The obvious coordinate g in this case is the angle of rotation of the g
wheel generating the cycloids in Fig. 26. The Cartesian coordinates expressed E
in terms of this angle are, according to (17.2), .

r=a{d—sing), z=a(l—cosd)e
y=a(l+-cos ¢), y:—uasincﬁqﬁl.




V1.35 Examples Illustrating the Use of Lagrange’s Equations 193

From these we calculate

T= %" (#2442 =ma?(l — cos ¢) 9'52

V=mgy=mga(l 4 cos ¢)

) L=ma?( —cosqS)cﬁ2 myga(l-+cos ¢).

This is all we need to know about the geometry and mechanies of our system.
The Lagrange formalism automatically takes care of the rest:

zi‘; =-2ma?(1— cos ¢) 96 2¢ =ma? sm¢¢2—}—mga sin ¢

gz % —2ma*(1— 0039{,)45'-}—271@@2 sin ¢ qéz

or, when substituted into the differential equation (6),

{1—cos ¢) gi;—l— %sin ¢ (;’;2= g&sin b.

Introduction of the half angle and division by 2sin%¢ simplifies this to
(2) sin qb —}—2cos S gbz cos %

It can easily be verified that the left member equals HZC%Z cos%qﬁ. Our

differential equation (2) is therefore identical to the previous Eq. (17.6),
by means of which we were able to prove the rigorously isochronous
behavior of the eycloidal pendulum.

(2) The Spherical Pendulum

‘ Here the angles 8 and ¢, polar angle and geographic longitude respec-
tively on the sphere of radius I, are the given coordinates of the mass point.
The line element is

ds?=1? (d0%+ sin%0 d¢?)
80 that the kinetic energy becomes
T= T2 (2+sin20 ¢2).
As in (18.5a) the potential energy is V=mg! cos @ and therefore

(3) I— %12 (éz_;_sin%l qsiz)—m‘gl cos 6.



194 Integral Variational Principles of Mechanics VI

And now the automatic calculation along the Lagrange pattern sets
After division by constant factors, the differential equations for 6 and ¢ a

6— sin 8 cos 896.2— % sin =0
(4) ) |
7 (Psin? 84)=0.

The second of these equations is the law of conservation of areal veloelty
in agreement with (18.8). Note that we have here avoided the calculation -3
which necessarily preceded this equation in the earlier treatment. With - l

the help of the areal velocity constant C' of Eq. (18.8), the first of Eqs. (4) 2
can be written

2 cosf
0= T gsp T 78I

The second term on the right is equivalent to the gravitational torque
|L]|=mglsin 6, this being the generalized component of force associated %
with the angle ¢=#6 in the sense of (34.7). The first term is a fictitious -
Lagrange force in the sense of (34.17); the origin of this force is the fact |
that the lines along which the angle 6 is measured on a sphere do not run,
parallel but diverge from the pole. '
It is instructive to apply to this example the extension of Lagrange’s
equations for which provision was made in Eq. (34.11) by introducing the -
excess coordinate r together with the 6 and ¢. Now r is of course fixed
through the relation »=1[; nevertheless we are interested in this coordinate .
because it will give us, by means of the multiplier A, the pressure of the
mass point on the surface of the sphere, or, what amounts to the same
thing, the tension in the suspension cord of the pendulum. In order to
obtain the pertinent differential equation we need only replace (3) by

(5) Lﬁ%"(ﬂ—l—rz g2+ 72 sin2f <;[;2)—mgr cos 6
and form a third Lagrange equation to be added to the two of (4),

(6) %mr mrf?— mrsin26g§2—]—mgcos(7’=)tr.

We have put the quantity Fy, occurring in (34.11) equal to r, for in order
to obtain agreement with Eq. (18.1) we have written the condition r=}
in the form

Fe= 3 (r2—1)=

If we set r=1[ and r=7r=0, it follows from (6} that
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M Al=1mg cos 9—m1(52+sin29 $2).

This 18 in agreement with (18.6) if there we transform the rectangular
coordinates t0 8, 6. Such a caleulation is once more avoided by the use of

the Lagrange scheme.

(3) The Double Pendulum
Iere the two angles ¢ and ¢ of Fig. 38 are suitable coordinates gy.
In the notation of § 21 we write

X=Lsing, x=LsingtIsin
(8) Y=Lcos¢, y=1Lcos¢tlcos .

From these we get the following exact relations:

= S X+ YY)+ T

- MEM agey D Ige-m Ll cos (¢ — bbb,

V= MgY —mgy=— (M-+m)gL cos ¢—mglcos .

The sign of the last expression is negative because (cf. Fig. 38) Y and ¥
have been taken positive in the direction of the force of gravity. We shall
here call A the Lagrangian formed from 7'—V since we have used the

letter L for the length of the pendulum suspension. We obtain
o4 _
o
04 2. .
24 —mititmLi cos (= Y4,

% = — (M +m)gLsin—mLisin (¢— ) b,

(M+m) qué.—}—le cos (¢— ) ‘/i‘a

g% = —mglsin y+-mLlsin ($— !/1)?5 '7!’

In writing down the Lagrange equations from these relations we shall at

Znoe go over to small &, . ¢, ¢ are quantities of the same magnitude

S¢, 4 their squares can therefore be neglected. The equations in question
are then

e g . m .E— ..

) ¢+f¢'—M+mL¢”

b+ y——74.



196 Integral Variational Principles of Mechanics

These are identical with the Eqs. (21.3); we need merely switch back fyoy
coordinate angles ¢, i to coordinate distances X, x by making use of t
transformation equations (8) which, for small ¢, i, simplify to

The identity is immediate for the second of Eqs. (9) and (21.3); the sam
is true of the first Eq. (9) and the first Eq. (21.3) provided we intrody

for :,lr in the right member its value from the second Eq. (9). The discussmn’
of the oscillation process following Eq. (21.3) is hence immediately apphca,ble
to our present Egs. (9) and need not be repeated here. 3
In concluding we wish to emphasize that in the present purely formal:
treatment there was no mention whatever of the tension in the pendulum
string I; this tension is implicitly contained in the Lagrange equations of ¥
motion as an internal reaction of the system, as has already been stressed ,
in the footnote on p. 112,

i3 A B G A M A s i o v

(4) The Heavy Symmetrical Top

The classical coordinates g, of this prob-
lem are the Eulerian angles 6, ¢ and [0
and ¢ have been introduced already in (25.4)
and (26.5a)]. We shall define them and their
corresponding angular velocities as follows

(cf. Fig. 52):
1. 6 is the angle between the vertical and

the axis of the top; 6 is the angular
velocity about the line of nodes which
is perpendicular to both of these
directions.

2. 4 is the angle which the line of nodes
makes with a fixed direction in the
horizontal plane, for instance the z-axis; Fia. 52. Definition of the

¥ is the angular velocity about the Eulerian angles 6, ¢, y, and
vertical. their sense. The labeling of the

. ) . axes is in agreement with the
3. ¢ is the angle which the line of nodes systems of coordinates intro-
makes with a fixed direction in the duced on p.139 (z=vertical, Z=

equatorial plane of the top, for example axis of top, :c:horizonta‘ll line *
. [ , fixed in space, X =line in the 3§
the X-axis; ¢ 18 the angular velocity equatorial plane of the top, fixed " §

about the axis of symmetry of the top. in the top).
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The 8, 4,, :,b are holonomic but curvilinear components of the angular
celocity vector o, as opposed to the w;, w,, w; which were rectilinear
but non-holonomic components of rotational velocity. Table (10) below shows
the direction cosines between both sets of components. The table also gives

the sense of rotation of g, q';, a,l: (rule of right-handed screw):

: . | :
0 ¢ ¢
wy cos ¢ 0 sin 6 sin ¢
(10)
Wy —8in ¢ 0 sin § cos ¢
ws 0 1 cos @

The first two columns follow in an obvious manner from what was said in
1 and 3. In order to understand the third column, note that the projection

of the vertically oriented vector 1/1 in the equatorial plane is x,!;sin #; this
vector in turn is resolved in the equatorial plane into the two components
indicated opposite w, and w,, viz., :,b sin #sin ¢ and a,b sin 8 cos ¢ respectively.
Notice that our table, unlike those in § 2, can be read only from left

to right, not from top to bottom. From its rows we now obtain

w; = os ¢ B+ sin Osin ¢ i,
(11) wy=-sin¢ §-+ sin 6 cos ¢ qﬁ, (11a) w,?+ wy?= 62 + sin%4 4}2_

Wy= <,!:'+ cos 0 z,b
Putting 7,=1,, the expression (26.17) therefore becomes

(12) T—= % (62-+sin? 642)+ 1—23 (+cos 8 4)°.

By virtue of Eq. (25.6a) for the gravitational potential energy V we have

L=T—-V= % (t9.2—l—sim2 91/;'2)+ % (¢;+cos Ggﬁ)z—P cos B,
(13) )
P=mgs.

L is therefore independent of the position coordinates ¢ and i and depends
only on their change with time. We say that ¢ and  are cyclic coordinates.
The name has its origin in the dynamic behavior of a rotating wheel (Greek:
K vkdoo) which is determined not by its instantaneous position but only by
its speed of revolution. Hence

o= oy ="
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From Lagrange’s equations the time derivatives of the quantities

oL 8L
— and —
2 oy
must then vanish. At the end of the last section we called these quantitieg
the generalized momenta associated with ¢ and . From now on we shaj}

always designate them by p. Thus we write in general

(14) P

_ oL

&qx
We can then assert that if the coordinates ¢, are cyclic, the momenta Py
conjugate to cyclic coordinates are integrals of the motion (i.e., constants &

of integration). In our case we already know the significance of these §
constants from (25.6). We have

(15) pp=M", py=M'.

Previously, on p. 141, we lacked the expressions of these constants in terms
of the position coordinates of the top. These can now be derived by applica-
tion of the general rule (14):

Py =5 =Ta(§-+os 69, g

oL

(16) : . :
Py= =1, 8in? O+ 15 cos 8(p+cos 8:4).

Combination of (15) and (16) results in

<;§+cos Hnﬁz l—l-fu ;
(a7 .
I,sin? 8p=M"— M" cos 6.

Egs. (17) exhaust the content of two of the Lagrange equations. The third
one expresses the rate of change of

el :
(18) py= 5 =16

and becomes, if (17) is used to eliminate qb and .},

M’ —-M" cos@) (M cos0—M"
I, sin%d

(19) 1,6=" )4 Psin 6.

The right-hand member, which comes from %, contains not only the gravi

tational effect familiar to us from (25.4), but in addition a fictitious force
which is a consequence of the nature of the coordinate system used, &8
we know from p. 192.
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Eq. (19) has the character of a generalized pendulum equation. We
need not be detained with its integration, for we can avail ourselves of

the integral of energy

which must be identical with the result of a first integration of (19). Let

us once more climinate the quantities ¢ and ¢ of Eq. (12) with the help
of (17). Then (20) yields

1) % {é2+ (W)2}+%%’:—|—Pcos 6=FE.

.I]_ gsin ¢

Qince Eq. (21) contains three constants of integration, namely M’, M", and
E, it must be the general integral of first order for the problem of the top.

Finally, just as in § 18 for the spherical pendulum, we replace 6 and 6 by

cos B=u; 0sin 8= — 1.
We then obtain
(22) (%)=t
where
@ v e

Since U(u) is a polynomial of third degree in u, the time ¢ must be given by
an elliptic integral of the first kind, as in the case of the spherical pendulum:

(1

The azimuth angle  is given from Eq. (17)

by an elliptic integral of the third kind
(cf. p. 100),

U
(25) = M —M"u du_
— ) L= 3t

We o ' . Fia. 53. Trace of the axis of
an now repeat the considerations follow-  the heavy symmetrical top on

E;g]fig - 29 on p. 99, and arrive at the picture a sphere of unit radius.

on alg. 5_3. The trace .of the axis of the top

latitudumt sphere oscillates back and forth between the two circles of
® u=u, and w==w,, which it touches. At the points of tangency, as
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shown in Fig. 53, the trace may either merely pass by, or make a lo
the loop may in turn degenerate into a cusp. During each oscillation th;:
axis of the top advances by the same azimuth angle 4.4, obtained from Eq, (25)
by a complete elliptic integral of the third kind, similar to that in (18.15),

In particular, if the top is to describe a regular precession about the
vertical, it is necessary that the parallel circles %, and u, become merged,
the curve U(u) of Fig. 29 (p. 99) must then touch the axis of abscvissae from
below. This shows that the regular precession of the heavy top is a particulay
form of motion (whereas, in the case of the top under no forces, it is the
general form of motion).

If the two roots u, and u, do not coincide exactly, but only approxi-
mately, we still seem to have a uniform advance of the axis of the top about
the vertical; on closer observaticn one notices, however, that small nutations
are superposed on this uniform advance, giving rise to what we called a
“ pseudo-regular precession ”’. This is the typical phenomenon that one
observes in the usual experiments with tops: one first imparts the greatest
possible angular momentum to the top about its axis by pulling a string
off its rim, and then sets it point down in a socket pan, taking great care not
to add a perceptible lateral impulse to the motion. :

We explain this behavior as follows: in such an experiment the initial "3
angular momentum M is close to the axis of symmetry; this also follows
from the Poinsot method for the initial axis of rotation. Hence the axis
of rotation describes at first a narrow circuit on the unit sphere of Fig. 43.
The parallel circles w=u,, u=wu, touching this circuit are close neighbors
and remain close during the entire course of the motion, as can be seen. :
from our general illustration in Fig. 563. The angular momentum and hence
also the angular velocity are at first very great; they, too, remain unchanged
during the motion apart from frictional losses. The nutations are therefore
very rapid and almost invisible. The top seems reluctant to yield to the
influence of gravity, instead constantly ° sidestepping” in a direction °
perpendicular to the force of gravitation. It is this paradoxical behavior
which has for centuries attracted amateur and professional investigator .
alike to the theory of the spinning top.

§ 36. An Alternate Derivation of Lagrange’s Equations

Even though the derivation of Lagrange’s equations for generali.zed
coordinates from Hamilton’s principle is unsurpassed in clarity and brevity, |
we feel that it is somewhat artificial. The transformation properties oir the
various dynamic variables, which form the core of the Lagrange equa,tlonf.!,
are not brought to light. The following derivation will remedy thi®
situation.
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We focus our attention on a system of ’—; mass points (n being divisible

by 3); subject to arbitrary constraints, chosen holonomic for the sake
of simplicity. The number of constraints is equal to n—f, where f is
the number of degrees of freedom of the system. Our notation will be
that of Eq. (34.2). We shall number the coordinates, assumed orthogonal,
23, % - - - Tad similarly we let X, X, ... X, be the components of the external
forces. Finally we shall call &, & ... &, the components of momentum
of our mass points. We would have preferred to name them p;, p, ...
p,, a8 agreed to in (35.14); this notation must, however, be reserved for
tl?e generalized momenta. We have

(1) Eiﬁmq',d;i’ 1=1, 2...n,

where the m, are of course equal in groups of three. The motion of our
system 18 described by Lagrange’s equations of the first kind (12.9) which
are, in the present notation,

(]

ag; oF u .
(2) _alin—FZ A#EE-, 1=1,2...n
u=r+1
We now introduce the generalized position coordinates g, . . . g, which can

be and are to be chosen in such a way that, just as in (34.2), the n—f
conditions F=0 are identically satisfied. Then Eqs. (34.2b) must hold
Letween the old and the new velocity coordinates; we solve these for the
x and write them as follows:

f

(3) T= > 4 g 1=1,2...n
k=1

The a,, called F in (34.2b), are functions of the z, . . . z, and therefore also
of the ¢, .. .4y, as stressed in § 34. We see that whereas the old and new
position coordinates are connected by an arbitrary point transformation, the

velocity coordinates transform linearly, the coefficients depending on the
position coordinates.

What is the transformation character of the components of force? We

shall call the new force components ¢, and define them as in (34.7) by
means of the invariance of virtual work, that is

n 7
SW = ?;Zl X, 8, :k; Q107

¥
We now pass from virtual to real displacements and from these to the
¢rresponding velocities. By virtue of (3), Eq. (4) becomes

Z Quan= 2 Xi > @k
k=1 i=1 k=1

(4)
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The g, unlike the x,, are independent of each other. Hence their coefg
cients on the right and left of (4a) must be equal, so that

(5) Q= ag Xy k=1,2...f
i=1

This is the transpose of transformation (3); in (3) we sum over the k, in
(5) over the 7. Written explicitly,

‘i’lzanq"l“}“amé’z e Q1=a11X1+a21X2+ “ee
Ty =0y gyt 220z - - - Qe=0a1 Xy + g X+ ...

The transposition hence consists of an interchange of a,, and a,;. We say
that the components of force tramsform contravariantly® {or are * contra.
gredient ") to the velocity coordinates.

The components of momentum transform like the components of force,
that is, covariantly to them. For we can think of the momenta as those
impulsive forces which cause our mass points, initially at rest, to take
on the required velocities. If we call the new momenta p;, they can be
expressed in terms of the old £; by means of the relations '

(6) Pr= z @S-
i=1

These are the defining equations for the p;. The definition is rather clumsy,
but can be converted quite readily to a more meaningful form. For this
purpose let us consider, as on p. 186, the expressions for the kinetic energy
as function of the ¢ on the one hand, and as function of the z on the other.
We shall distinguish the two expressions, wherever necessary, by writing

T, or T,

We then form

Ty  ~0Ts [3&i ],

7 X ALA
i=1

The bracket is to remind us that in differentiating with respect to g Ve

must keep the g, as well as all ¢; (i #k) fixed.  According to Eq. (3) Fhe

term in brackets is just a;,. On the other hand the elementary expression .8

Ty

T £,

oici

T;= —;Z m,x? evidently yields

.
a superscﬂPt’

5 In the theory of general relativity it is customary to denote by
(O, p¥) those quantities which, like @ and the p (about to be defined), transfor™
contravariantly (i.e., are ** contragredient ") to the g, We believe, h?Wever
that this usage, so important in general relativity, can here be dispensed with, @



v1.36 An Alternate Derivation of Lagrange’s Equations 203

[nstead of (7) we then have

0Tq _ ,
o s = &
The right member is identical to that of (6). Hence the result:
= 8——-T_qt
(9) Pr= g,

We can now assume that the external forces are derivable from a potential
v independent of the g, and introduce the Lagrangian L=T—V, so that

(9) can be rewritten”

oL
(9a} Pr= T

We have thus quite generally justified the definition of the p; anticipated
in (35.14).

We are now in a position to transform the equations of motion (2) to
generalized coordinates. To this end we multiply them successively by
the different a,;, (k=1...n) and sum over i. By Eq. (5), the first term in
the right member becomes

4
(10) Q= e
* Inthe second term on the right the factor of Ay is

* oF
(11) I =
izlatk P for pu=f+1,...7

Now Eq. (3) tells us that

This hecomes evident if one writes (3) in the equivalent form dz, = 2 a, dq,,
and holds all ¢ except ¢, fixed. Instead of (11) we can now also write
5t bar Ga
B : o .

;t according to (34.2) it is precisely for w=f+1,...n that the F, have
der'n Ir{ade identically zero by our choice of the g,, so that the partial
r }IlVatwes of the F, with respect to the g; vanish as well. Hence the

8% member of our equation reduces to (10).



204 Integral Variational Principles of Mechanics

The left member,

dE;
D iy

t

is transformed into

d daik . dpk d doy ,
(13) G abim 0 &g =0 = 2 bidg,
T T 1

where we have made use of (6) and (12). The last sum can be written in fi;z
the form

. 3.’bi_ g 1 o o .
2 M gy~ gy 32,5 gy 4

where the index q of T is to remind us that T must be converted to g
function of the g, ¢ before the differentiation with respect to g, is carried i
out. The right side of (13} will then become :

dpp _ T

(133;) dt gq—k

Since it is to be equal to (10), we finally obtain

dp,, oT' &V oL
(14) @ = ag, " ey oay
Referring back to (9a) we see that this is identical with the Lagrange
equation in form (34.6), or, if we do not assume the existence of a potential
energy, with that in the form (34.8).

We have thus convinced ourselves that we need not have recourse to
Hamilton’s principle to derive the Lagrange equations; we need merely
make a thorough study of the transformation properties of the dynamie ‘
variables involved.

§ 37. The Principle of Least Action

In the conclusion to § 33 we spoke of the teleological character of Ollf
integral principles. ¢ Teleological ” means * shaped by a Purpose,'
“ directed toward an end.” ° Among all possible motions, Nature chooseﬁ
that which reaches its goal with the minimum expenditure of action.
This statement of the principle of least action may sound somewhat vagué
but is completely in keeping with the form given it by its discoverer. _

In the formulation of the principle not only teleological bll_t ?’150
theological beliefs played a role. Maupertuis recommended his princt
with the assertion that it best expressed the wisdom of the Creator:
Leibniz, too, must have had such arguments in mind, as shown by W

title of his Theodicée (justification of God).
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Maupertuis published his principle in the year 1747. He was referred

to a letter of Leibniz of the year 1707 (the original of this letter has been
lost); he nevertheless defended his priority with passion, even throwing
his ’weigh’o as president of the Berlin Academy into the dispute. The
rinciple acquired a mathematically definite form only later in the hands

of Euler and especially Lagrange.
In the formulation of the principle of least action given above two

things are not clear.

1. What is meant by the word *““ action ” 7 Clearly not the same entity
as in Hamilton’s principle, for we are dealing with a formulation which,
though related to that of Hamilton, is yet distinct from it.

9. What is meant by the phrase, ““ all possible motions ”’? It is quite
essential to define precisely the class of all motions to be considered for
COMPATISON ; only thus shall we be able to choose from this class the real
motion as the most purposeful or favorable.

Regarding 1: Leibniz took the product 27 d¢ as his element of action.
In what is to follow we, too, shall designate by action integral the quantity®

t
(1) N =2f Tdt.
t
Maupertuis, who, like Descartes, regarded the momentum mv as basic in
mechanics, took mvds to be the element of action. It is clear, however,
that the definitions of Leibniz and Maupertuis are equivalent in the case
of the single mass point, since

(2) QT dt=mv - v dt =muvds.

This equality carries over to arbitrary mechanical systems, provided
that by action we understand the sum of the m,v,ds, for all the mass points
of the system.

Regarding 2: in Hamilton’s principle we had restricted the sum total
of motions to be compared by means of conditions (1) and (2) of § 33.

glere we shall keep (2), but alter (1). Instead of 8 =0 we shall now require
at

) SE=0.

W . -

the shall therefore compare only trajectories of the same energy E as that of
th“;t?'Eal trajectory wunder investigation. This condition implies of course
\__O_IEBE“‘ClpIe is now valid only for motions in which energy is conserved,

6
T};?,ni.?'tor of 2 i? of course unimportant as far as the minimum property of S is
Inci’dé'ne‘i- It Is, _however,' co.nvenient, especially for the formulations of § 44.
we ntally Leibniz was still in doubt as to whether he should take me? or, as
nowadays do, 4me? as ‘‘live force.”
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i.e., motions caused by forces which have a potential. If we call the potentig}
energy of the real path ¥V, that of the varied paths V-3V, we must hay,
because of (3),

(4) ST8V =0, 8V—=—03T, SL=0T—3V=23T

To visualize the change in the state of affairs
caused by condition (3) we recall Fig. 51. There
two points related by a variation 3¢ belonged to
the same time £. This is now no longer the case.
The time of the varied point is ¢-}- 8 rather than
t (cf. Fig. 54). Hence our varied path does not
reach the end point at time #=¢,, but, according
to the way our figure is drawn, at a later time.
On the varied path a point @ is reached at a
time t=¢;, whereas on the original path the
corresponding point (also labeled @) is reached
at an earlier time t, —ot,.

We now repeat the calculations of § 33. Egs.

(3) and (4) of that section remain valid, but Fie. 54.

“trajectory

Variation of the

LR

Eq. (6) must be altered because, as stressed there,
it is valid only for 8 =0. We find the condition
replacing (5) by forming

5, dtse) dv,

— d(+ety dt

(5)

Let us transform the quotient of differentials on
the right by writing

d{z+dz) dz d

- 4+ 5 6z
6 dt At dt T _dr o disny 2L sty 4+ L.
©) de+sy | @ @t T (5%) = T O o
dt +

where we have neglected products in small quantities of order higher than .

the first. From (5) we therefore have
. d . d
or
d . . d
(7) d-t(é‘a:)=8x+xgt(8t).

If we introduce this in (33.4), we have, with index k arbitrary,

(8)

dt

. . .o .o d
X, 0x;, = a (&, 0y) — ), 0% — x,%ﬂ(&).

in the prin; 3
ciple of least action. Since i
the energy is not varied,
point g of the original path
and g-+dg of the varied
path belong to different
times t and ¢-+0t. To the
endpoint P on the real
path is assigned the point

Q on the varied one.
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v1.37
£q. (8 is valid for coordinates y and z as well as x. Therefore (33.3),
ra%inef than leading to (33.8) as before, yields in this instance
. . . d
(9) C%Zmk(kawﬁykSykJrszzk):ST+2Tc—{t(8t)+aw.
Here we make use of (4) to put
(9a) SW=—8V=+438T,
thereby giving as the right member of (9)
dét
(10) 201 +27 =+

Let us now integrate (9) from £, to ¢;. In this process the left member
vanishes because of condition (33.2); we then obtam, using (10),

(11) 2 ﬁ‘ 5T dt+ 2 ﬁ T dst=-0.
This, however, is nothing but

(12) 28 f: Tdt=0

or, recalling (1),

(12a) 88=0.

This concludes the explicit proof of the principle of least action, as envisaged
by Maupertuis.

Let us subject the transition from (11) to (12) to some further scrutiny.
In Hamilton’s principle the two symbols

3 f Tdt and f ST dt

could be used interchangeably because of the condition 8 = 0; use of
this was made for instance in the transition from Eq. (33.10) to (33.11).
From our present viewpoint the expressions are, however, different in
character, as comparison of Egs. (11) and (12) above will show.

In particular, let us consider a motion under no forces. In that case
T = E, so that, with the help of (3), Eq. (12) gives

b
(13) af dt = 8(t; — ty) = 0.
tO

This is the principle of least time (principle of ‘‘ earliest arrival’’) which

Ferfnat formulated and applied to the refraction of light, after Heron, in

nclent times, had treated the reflection of light in a similar fashion.

. In the case of a single free mass point we can put » = const. instead of
= & and write in place of (12),
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(14) 8fvdt= SJ.dSzO.

This is the principle of the “ shortest path.” It determines the trajectol-&
of a free mass point, for instance on a curved surface or — as in generg) 3
relativity — in a manifold of arbitrary curvature. Such a trajectory jg
called a geodesic. We shall come back to this point in § 40.

In his celebrated Konigsberg Vorlesungen uber Dynamik of 1842 (publisheq
by Clebsch) Jacobi justified the necessity for completely eliminating the :
time ¢ from the principle of least action. This is possible, because :

b B

. __1 Q#Ekadsi.
T=E—V= §2mkvk_2M

FIREET SERPPER DO

di?
and therefore
_ {Zmy, ds} i_
at= (55
Instead of (12) we can then require that
(15) 5[ [2(B— V)]}[Zmy dsf]t =0,

With E fixed, the variation here concerns only the spatial properties of
the trajectory of the system; there is no longer any mention of the passage
of time during the motion.

Let us come back once more to the teleological aspect of the principles
of Hamilton and of least action. Notice that the ‘‘ least action ” may,
under certain circumstances, also be a ‘‘ greatest action ”*; for in demanding
that §...=0 we do not necessarily obtain a minimum, but rather in g
general only an extremum. We see this most simply in the example of 3
the geodesics on the surface of a sphere, which are arcs of great circles.
Suppose that initial point O and endpoint P lie on a specified hemisphere.
Then the arc of a great circle connecting them directly is indeed shorter
than all arcs lying in planes through O and P but not containing the center ;
of the sphere. Yot the complementary arc, which proceeds from O to P -
in the opposite direction, traversing the hemisphere not containing the two ]
endpoints, is also a geodesic; and this line is longer than all other arcs -
of circles which join O to P over this hemisphere. We therefore conclude 3
that in general we do not need to think of the integral principles 88
demonstrating the ‘ purposefulness ” of Nature; they merely constitute
an unusually impressive mathematical formulation of an extremal property
common to the laws of dynamics.

Maupertuis claimed that his principle was generally valid for all laws
of nature. Nowadays we are more inclined to accord this property '00
Hamilton’s principle. We mentioned on p. 185 that Helmholtz made this
principle the basis of his studies in electrodynamics. Since that time
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integl‘&l variational principles of Hamiltonian form have been used in the
most diverse fields.

Tn volume II we shall have direct recourse to this principle in order
to gain decper understanding of the concept of fluid pressure. A special
advantage of this procedure will be that we shall obtain not only the
differential equations — in this case partial differential equations — of the
Problem, pbut also the boundary conditions which the solutions of these
equations must satisfy. The same turns out to be true for other problems
with continuous mass distributions (capillarity, vibrating membrane, ete.).
In many cases it is first necessary to look for the Lagrangian L of the
problem at hand before L can be used in the variational principle. Such
a case, for instance, is the motion of an electron in a magnetic field; there
the force acting is not derivable from a potential ¥. Relativistic problems
form another case; there one should not use the expression for the kinetic
energy derived in (4.10) to build the Lagrangian. Instead the expression

(16) moczf(l- BA)de

must be used as the kinetic contribution to the action principle. The
Eulerian derivation of this term leads directly to the relativistic momentum p
of (3.19) and therefore also to the law of the velocity-dependent electron
mass. In general, especially outside of mechanics, the search for the
Lagrange function L which leads (via the variational principle) to given
differential laws is an arduous problem for the solution of which there are
no universally valid rules. The previously mentioned problem of the
electron in a magnetic field was solved in a simple manner by Larmor
and Schwarzschild. A separation of L into a kinetic and a potential
contribution according to the pattern L=7-—7 is then in general no
longer feasible.

It is to be emphasized that the quantity under the integral of (16) is
nothing but the element of proper time (2.17), which was recognized by
Minkowski as the simplest invariant of the special theory of relativity;
Einstein furthermore generalized it in the form of a world line element in
the general theory of relativity. In the form (16) Hamilton’s principle
bherefore automatically satisfies the invariance requirement of relativity
theory, In this property Planck? saw the ‘ most brilliant success which
Hamilton’s principle has achieved.”

7 . ‘
Cf. the instructive article in Die Kultur der Gegenwart, Part 111, § III, 1, p. 701
(B. G. Teubner, Leipzig 1915).



CHAPTER VII

DIFFERENTIAL VARIATIONAL PRINCIPLES OF |
MECHANICS

§ 38. Gauss’ Principle of Least Constraint

Gauss was not only a very eminent mathematician, but also ap
astronomer and geodesist, and, as such, a passionate calculator of numericaj °
results. It was he who founded the method of least squares, which he -
evolved with successively greater depth in three extensive treatises. If,
as happened now and then, he was asked (against his will} to deliver a
lecture at the University of Goettingen, his preferred topic was always the 3
method of least squares.

His brief paper of 1829 entitled “ On a New General Fundamental
Principle of Mechanics 7! is concluded with the characteristic sentence, f
“It is quite remarkable that Nature modifies free motions incompatible S8 |
with the necessary constraints in the same way in which the calculating §
mathematician uses least squares to bring into agreement results which are
based on quantities connected to each other by necessary relations.”

Gauss called his new fundamental principle the principle of least con-
siraint. He defined the measure of constraint as follows: consider a mass -
point of the system, and form the product of its mass by the * square of
the deviation of this point from free motion.” The sum of this product :
over all mass points of the system defines the constraint. Let us number i
the mass points and their rectangular coordinates as on p. 66. We then have

(1) Z= mk(a&k—@)z

as the measure of the constraint of a system of » mass points; for the
“ free motion >’ which would occur were the internal constraints neglected

is given by

. Xy
Tp= ;nkk.

Thus the quantity contained in the parenthesis of (1) is indeed the *‘ devia- .28

tion from free motion ” caused by the constraint on the k't mass point.
—

1 Crelle’s Journal f. Math. 4, 232 (1829); Werke 5, 23.
210
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It can (cf. p- 61) also be called the ““lost force ” divided by the mass, so
that instead of (1) we can write

3n
1 2

@) Z= kgl m (lost force)s.
Notice that here the lost forces and reciprocal masses play the same role
ag the errors and weights in the calculation of errors.

We must now define what is meant by the expression ““ least constraint,’’
that is, we must indicate what quantities are to be kept fixed and what

uantities are to be varied in the calculation of 6Z=0.

We shall keep fized

a) the instantaneous state of the system, i.e., the position and velocity
of each of its mass points. We must therefore put

(3) 3z, =0, d8z,=0.

b) the constraints to which the system is subject. If we take these In
the holonomic form F;(x;, #,, . . .)=0, we must, in the variation 67z, take
into account the secondary condition

& or; )
(4) > o S1=0, i=1,2...7,

k=1
where r is the number of conditions, 3n— r=f therefore the number of degrees
of freedom of the system. Let us differentiate Eq. (4) twice with respect to .
This yields terms in 8z, 8& and 8%. Because of (3) we need keep only those
in &z, that is,

3n
da Fis o

¢) the forces acting on the system and, of course, the masses, so that
we have

(5) 8X;=0, &my=0.

The remaining quantity %, is then the only one to be varied.
Taking the secondary conditions (4a) into account by the method of
agrange’s undetermined multipliers, we obtain from (1)

(6 an r SF
k=1 t=1

coﬁlly f=3n—r of the 8%, are independent. As on p. 66 we can, however,
00se our A; in such a way as to make 7 of the {} vanish, so that only
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f terms are left in (6). The &x; of these remaining f terms can now
treated as independent. It follows that their f associated {} must vanigp
We therefore arrive at Lagrange’s equations of the first kind in the forp, |
(12.9).

Clearly the proof extends without change to non-holonomic constraints,’
Thus we are indeed confronted by a ““ new general fundamental principle of
mechanics,”” as claimed by Gauss in the title of his paper. This fundamenta)
principle is fully equivalent to d’Alembert’s principle. Like the latter it
is a differential principle in that it deals only with the present behavior
of the system, not its future or past behavior. Here we do not need the
rules of the calculus of variations, but only those of the ordinary differentia].
calculus in the determination of the maxima and minima.

§ 39. Hertz’s Principle of Least Curvature
Strictly speaking this principle is but a special case of that of Gauss.
Nevertheless Hertz was able to call his principle, if not new, at least com-
pletely general; the reason tfor this is that he succeeded in replacing all i
forces by means of connections between the system in question and other
systems interacting with it (cf. p. 5). Hertz was hence able to restrict i§
himself to systems under no forces. In order to give the principle its sought«
for geometric interpretation, he found himself obliged, moreover, to assume
all masses to be multiples of a unit mass, say of atomic origin. The factor my
in Gauss’ expression (38.1) then becomes 1, while X, becomes 0. It follows
that (38.1) goes over to

N
(1) 7= .
k=1

Here we have indicated by means of the upper index N of the summation

that the number of unit masses of the system to be summed has been

augmented in an unspecified manner by a suitable number of unit masses

corresponding to the interacting systems coupled to the given system.
Let us change (1) by writing

N
“Zk  inplaceof i, where (2) ds?= de%
1

ds?

This is permitted because of the special form of the principle of enel.‘gy .
This principle is a consequence of Lagrange’s equations of the first kind,
and hence also of the principle of least constraint. For our present
specialization the principle of energy can be written
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or, MOLe concisely,
’ ds\2
di = const.

A division of (1) by the square of this constant yields thus the quantity

S (a2
(3) K= k; (ddsﬂk)z '

Hertz calls ds the element of line, Kt the curvature of the trajectory
described by the system, and postulates

n SK=0.

Every free system remains in a state of rest or of uniform motion along a path
of least curvature.

The mode of expression (cf. Art. 309 of Hertz’s book cited earlier) is
chosen so as to recall Newton’s formulation of the first law.

The mathematical treatment of postulate (4) follows that of Gauss and,
on the basis of the conditions of variation stipulated under (a) and (b) on
p. 211, evidently leads to Lagrange’s equations of the first kind for a system
under no forces (with m;=1).

What justifies Hertz in calling ds the “line element” and K* the
“curvature ’? KEvidently these concepts are to be interpreted in a poly-
dimensional sense. We are not in three dimensions, but in an N-dimensional
Euclidean space of coordinates z,, z, . . . xy. In this space the element of
line is indeed given by (2). We shall now discuss the cases of two and
three dimensions in order to show that the square of the curvature of a
trajectory is quite generally given by (3).

According to Eq. (5.10) we have, in the space of coordinates x;, ,,

1 Ade\2
(5) K== (%)
From Fig. 4b, de is the angle between two neighboring tangents to the
Path whose points of contact with the path are a distance ds apart. These
tangents have direction cosines

(6)  Ix dx,

1 dx, d%x,
ds  ds and =24+ =1

dx d?x
ds + ds? y :

Ads, E+ Tt ds, respectively.

Now these direction cosines are at the same time the coordinates of the
two pOintS formed by the intersection of a unit circle about the origin of
coordinates with two radii drawn from the origin parallel to the tangents;
Moreover the angle de is measured by the arc of distance between these
WO points of intersection. According to (6) we therefore have
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s (G (s

and from (5),
g K= (G )+ (&)

In the space of the three coordinates z;, %, 3, de is once again the
angle between neighboring tangents to the three-dimensional trajectories,
The unit circle is now replaced by a unit sphere through the center of which
parallels to the two tangents are to be drawn. The distance between theiy |
points of intersection with the surface of the sphere measures Ae in units

of arc:
s[5 5552 o

From (5) we thus obtain an expression for K which now has three terms. .

The generalization to a space of N dimensions and to the equation (3) ‘
of N terms is now obvious. 4

With this we must conclude our report on the mechanics of Hertz. As:
mentioned on p. 5, his is an interesting and stimulating idea, carried ouf
with great logic; because of the complicated replacement of forces by
connections it has, however, borne little fruit. -

§ 40. A Digression on Geodesics

We define as geodesics of an arbitrary curved surface the trajectories
of mass points under no forces (hence no friction) constrained to move on.
the surface. Let the mass of a particle be equal to 1, and the equation of
the surface F(z, y, 2)=0.

The principle of least action states that these geodesics are also the
shortest possible lines or, more generally (cf. p. 208) lines whose lengths
are extrema. Since conservation of energy holds, the velocity along the

path is constant. By choosing the constant of energy properly we can pub

d

the velocity equal to 1 and therefore replace - by d%

We obtain the basic definition of geodesics if we describe our tra,jectorifs
by Lagrange’s equations of the first kind. Written vectorially, these are, 1B
our case,

(1) v=Agrad F.

v has the direction of the principal normal to the trajectory if, as in ouF,
case, v— const. so that 9=0 (cf. § 5, beginning of (3)); it follows (cf. same.
place) that ¥ lies in the osculating plane. grad F, on the other hand, bt
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the direction of the normal to the surface, since for any translation (dz, dy, dz)
on the surface we have

oF oF oF

qo that the direction w op op

dx " Oy ' 0Oz
is indeed normal to that of the displacement. Eq. (1) therefore contains the
pasic definition of geodesics which states that the principal normal of a
geodesic coincides with the normal to the surface, or equivalently, the osculating
plane of @ geodesic contains the normal to the surface.

We now appeal to the principle of least ecurvature. According to it
the geodesic has a smaller curvature than neighboring paths; the neighboring
paths are, according to conditions (38.3), restricted to pass through the same
point with the same tangent as the geodesic at the point considered. We
obtain the total class of these neighboring paths by passing through the
tangent in question all possible skew planes and determining their inter-
sections with the surface; the plane containing the normal to the surface
furnishes the geodesic. According to Hertz’s principle these skew sections
have a greater curvature than the normal section, or, equivalently, a smaller
radius of curvature.

This fact is in agreement with Meusnier’s theorem in the differential
geometry of surfaces, which states that the radius of curvature of an oblique
section equals the projection of the radius of curvature of the normal section
on the plane of the oblique section. We thus recognize in Meusnier’s theorem
& quantitative expression of the general content of the principle of least
curvature,

Let us finally apply Lagrange’s equations of the second kind to our
geodesics. 'We thereby enter the sphere of thought of Gauss’ great treatise
of 1827 (« Disquisitiones generales circa superficies curvas ), which, ex-
tended to four dimensions, is also the sphere of thought of the general
theory of relativity.

While Lagrange introduces arbitrary curvilinear coordinates g, Gauss
USes as coordinates on the surface two arbitrary families of curves which
tover the surface with a grid.” As customary, we shall call them

(2) u=const., v=const.

I .

1 these coordinates (Gauss writes the line element ds in the form
3

(3) ds?=Edu?-+2F dudv 4 Gdo2.

Th ¢ . )
© "first differential parameters ”’ K, ¥ and G are to be thought of as
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functions of # and ». They are connected with the rectangular ecoordina;
x, y, z of the points on the surface by the relations

() (2 o=@

\ 4

owow | tydy | 020z,

an—tca_v+8uav+8u30

The square of the line element divided by 2dt? is the expression of the;'i
kinetic energy 7' of our (unit) mass point moving on the surface. We ca.n
thus transform the Lagrange equations for generalized coordinates
Gaussian notation by forming

b L R PR AR AR e T

oT . .

8T 0K .o, o0F .. | 8G .,
Z%M%—u-{—Qa—uuv—}—%b.

If, finally, we put (—% in place of C%’ the differential equation of the geodesi :
is, according to the method of Lagrange,

d du dv 1 [ 2R [fdu\2 oF du dv | 6G fdv\2
(4) a‘;(E@”FF&:):ﬁ{@(a;) +2ma@ﬁ+@(%) }

for the u-coordinate. We need not write down the corresponding differentiak
equation for the v-coordinate; by virtue of the principle of energy (in o

case %::Z 1) it must be identical to (4).

Gauss derives Eq. (4) in Art. 18 of the cited treatise by means of
principle of the shortest path. Here we merely wanted to point out t
fact that Gauss’ method of general surface parameters (2) is equivalent
Lagrange’s method of the mechanics of systems. Both methods are invaria
with respect to an arbitrary transformation of coordinates and depend only
on the intrinsic properties of the surface or of the mechanical systens
respectively.

o B i B K51



CHAPTER VIII

THE THEORY OF HAMILTON
§ 41. Hamilton’s Equations

In Lagrange’s equations our independent variables were the ¢, and ¢,.
In Hamilton’s equations, which we shall now derive in two different ways,
the ¢, and p; are the independent variables; the latter is defined by
Eq. (36.9a). Whereas the characteristic function of Lagrange’s equations
was the “ free energy ” T— V, regarded as function of the ¢; and ¢, in
Hamilton’s equations the characteristic function is the total energy TV,
regarded as function of the ¢, and p,. This function we call the Hamiltonian
function or simply the Hamslionian, and we designate it by H{q, p) just
as we called the free energy the Lagrangian and designated it by L(q, ¢).
Between H and L there exists relation (34.16), which we shall write

(1) H=2p;q,—L,

using the definition of the p,.

Let us at once extend the basis of the theory by recalling the last part
of §37: we shall drop the decomposition of L into a kinetic and a potential
contribution and, in addition, permit an explicit dependence on ¢. According
to p. 190, such a dependence may arise if either the equations of constraint
or the defining equations for the coordinates contain the time. We then
write the Lagrangian in the generalized form

(la) L=L (t: q, Q)
Let us keep Eq. (1) as our definition of the Hamiltonian associated with L,

a%thollgh H then loses the meaning of total energy. As before, the p,, are
gven by the relation ,

(lc) _ oL,
Pr= gy,

If we take Hamilton’s principle

t
(1d) af Ldt=0

2

ag .. . . .
our fundamental principle of mechanics, we obtain Lagrange’s equations

217
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just as in § 34 —in spite of the new extended meaning of L. For purpo
of the following we shall write these equations in the form

. oL
(1) Derivation of Hamilton’s Equations from Lagrange’s Equation
Let us write down the total differentials of H and L:

oH oH o
(2) dH= —di+ Z@Cko-F Za—pkdpk,
oL oL oL .
(2a) dL= 43 s gt D g ddy,

and, by means of Lagrange’s equations (le) and the definition (lc) of th
Py, transform dL to

oL . .
(2b) dL= % dt+ > prdqy+ > Ppdi

Let us, on the other hand, form the total differential of (1) with th
help of (2b):

3 - - aL . .
(3) dH:ZQk dpk+zpk dgy— "@?dt““zpk dqy.— Z,Pk dgy
Cancelling of the last term on the right against the second term yields
oL . .
(3a) dH = — - dt— Zpk qu—I—qu dpy.

This expression for dH must, of course, be identical to that of Eq (2).;
If we equate the coefficients of dt, we obtain

8H oL,

(3b) %

Comparison of the coefficients of dg, and dp;, yields

. oH . oH

(4) Pe="5q. ™ apy,
These relations, exhibiting an amazing symmetry, are « Hamilton's.
ordinary differential equations * or, for short, Hamilton’s equations.
Incidentally, they first occurred in the much earlier “ Méca:II%que"f
analytique ” of Lagrange (Sec. 5, § 14), where they were, however, derived
and put to use only for the special case of small vibrations.

(2) Derivation of Hamilton’s Equations from Hamilton’s Principl

In the light of (1) we write this principle in the form
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) = > [ (55 80u+ 5. 91— 0 9Pa— 1150, ) =0,
k

where we can transform the last term in the parenthesis by partialintegration,
b . . b
(6) - L Py, 0Gy, dt = L Py, 8qy dt— py. gy | -
0

) by

The integrated term vanishes because of the way in which the variation
is carried out in Hamilton’s principle. Substitution of (6) in (5), followed
by collection of terms in 8¢, and 8p,, yields

(7) %f({%+f’k}qu‘i—{%—qk}Spk)dt:O.

If it were permitted to treat the ég; and the 8p, as independent variations,
one would be justified in putting the factors of 6¢, and 8p,, separately equal
to 0 for every value of the index k, and so obtain Hamilton’s equations (4).
This, however, is not allowed; for while g, and p; enter in H as independent
variables, they are related in time through Eq. (1¢), a fact which might
conceivably cause our Eq. (7) to be satisfied identically. We notice, however,
that a partial differentiation of (1) with respect to p;, (g, being held constant)
causes the second { } of (7) to vanish identically. We conclude, therefore,
that the first { } must vanish as well.

One of the reasons why we derived Hamilton’s equations in the second
way is that we wish now to make an important remark connected with it.

We know that Lagrange’s equations are invariant under arbitrary
“ point transformations,” i.e., that they keep their form if we replace the
% by a new set of coordinates @, connected with the former by relations
of the type

(8) Qr=Sr (@1 @20 - - - Gp)-

The associated P, are then given by
(8a) p _ oL oL 8y
= — = —_— = + O 3
a0, Zaqf 8Q% 21’1 *
B c 0 N . . hd
tﬁ'lt 15,‘ by linear functions of the p; whose coefficients a,, are functions of
© 91, Just as in (36.3).

" We shall now show that Hamilton’s equations are invariant under the
uch more general transformations

(9) Q=S (¢, D)
szgk (q> p)a




220 The Theory of Hamilton VI

where the f, and g, are arbitrary functions of the two sets of varial
q;, and p,—arbitrary, that is, to within a restriction to be mentioned below
In particular, the g, need no longer be linear in the p.

Let us suppose that Eqgs. (9) are solved for the g, p in terms of the @, p
[we must of course require that Egs. (9) be so constituted that this is possible
and are substituted in the expression H(g, p). Let us call H this new trang
formed Hamiltonian. We then have

(10) H (¢, p)=H (@, P).

Let us, moreover, compare the quantity 2Zp; ¢, occurring in (5) with
3P, Q. It is easy to see that the two expressions would be equal in '
transformation (8), (8a). We now require that this equality be maintained;
in a general transformation (9), apart from an additive term. The latter |
we require to be a complete time derivative of a function F’ of the ¢ and p
or, alternatively, of a function ¥ of the ¢ and @'. We hence put

(11) S pedi= 5P @t 5F (0, Q)

with arbitrary F. This is the restriction on transformation (9) mentioned

above.
In the substitution of Egs. (10) and (11) in (5) the additional term
2 vanishes in the integration and subsequent variation, since 8g and 8

dt
vanish at the endpoints; Eq. (5) then retains its earlier form, becoming

8[(H(Q, )~ 3Py Q) dt=0.

Furthermore, nothing is changed in our transformations (6) and (7); w
conclude that Hamilton’s equations remain valid in the new variables. In
complete correspondence to our Eqgs. (4) we now have

: oH ; 8H
(12) Py=— g0, “Y=ip,

Transformations (9), as subjected to restriction (11), are called canonicab
transformations or? contact transformations. The reason for the latter name-

—__-____———'_‘_F-‘
o solve for p from.

1 If F’ is originally given as a function of ¢ and p, we can of cours
the first Eq. (9) and substitute it in ¥/, thus obtaining a new function F of ¢ a,nd e

? The terms are not entirely synonymous, their difference being one of deﬁll.lt"‘o
We need not be detained with this difference, but remark that under suitabley
conditions either of the two transformations can be shown to b
of the other. Cf., for instance, Whittaker, Analytical Dynamics (Dover),
XI, or Osgood, Mechanics (Macmillan), Chapter XIV.—TRANSLATOR.

e a special
Chap™
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is & geometric one. Let us consider a hypersurface in the f-dimensional
space of the ¢y, g2, - - - gy, given by

13) =gy - - - 4));

the quantities
oz
Pr= &g,
determine the position of the tangent plane to the hypersurface and can,

for this reason, be interpreted as the coordinates of this plane. We require
that there exist a condition

f
(14) dz= > pydyg,
k=1

between the coordinates of the point ¢; and those of the plane p,. This
condition insures the * union of lineal elements,” i.e., the continuity of the
coordinates p, as we pass from an arbitrary point of coordinates ¢, to a
neighboring point. Let us now introduce new coordinates ¢, P, by means
of Eq. (9) and calculate (13) in terms of these new coordinates. Let the
result be

z2=27(Q, P).

We now demand that this new expression again represent a hypersurface
touched by the planes of coordinates P at the points determined by the Q.
From (14) we must therefore have

f
(15) dZ= 3 P dQ,
k=1

or, with p a factor of proportionality,

(16) dZ~ 3 Pp,dQp=p (dz— > p; dgy).

}Thus the contact between the surface and its tangent plane at a given point
t.aS been preserved in a transformation of the point. Let us compare condi-
1on (16) with Eq. (11), which, when multiplied by dt, can be written

(16a) Spxday= S Py dQy+dF.

If w :

ii We put dF—=dz—dZ in (16a) and p=1 in (16), the two conditions are

« 8reement. This may constitute adequate justification for the name
¢ontact transformation.”

. In transformations of the generality of Egs. (9) the meaning of the P, I
®Omponents of momentum is obscured. For this reason we prefer to
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call the P, Q, canonical variables; P; and @ are then said to be canonicq,
conjugate. Because Hamilton’s equations are invariant under transformg,
tions (9) [with restriction (11)], they are often called Hamalton’s canonieg]
equations.

It is to this invariance under canonical transformations that Hamilton’s;f
equations owe their special significance in astronomical perturbation theory,
They also play an important role in the statistical mechanics of Gibbs, 4
topic which we shall discuss in Vol. V.

We conclude our treatment of Hamilton’s equations with a remark
dealing with the principle of energy.

In agreement with Eq. (2) we have, quite generally,

dH ©¢H oH . oH .
@ =%+ 2wt o)

According to (4), the parenthesis vanishes for all k. We then obtain, in
general, '

dH ©oH
(17) = o

If, in particular, H does not depend explicitly on i, we arrive at the
conservation law

(18) 47 _0, H-const.

This law is more general than that of the conservation of energy, for,
according to (1) and (lc), it states that

ol .
— ,.— L= const.
aquk

(18a)
where L must not depend explicitly on ¢, but otherwise can be quite arbitrary.
Tt is this conservation law to which we alluded in footnote 3 of Chapter VL
Eq. (18a) leads to the conservation of emergy if L can be split up into tWO
contributions, a kinetic one homogeneous of second degree in the Q> and
a potential one independent of the g,.

§ 42. Routh’s Equations and Cyclic Systems

In Egs. (10) and (11) of § 34 we considered a “ mixed type” of
equation resulting from a combination of Lagrange equations of the -
and the second kind. We shall now become acquainted with a mixed ¥
of equation arising from a combination of Lagrange’s equations of the 86COF '
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kind with those of Hamilton. The new equations bear the name of Routh3
who, for several decades, dominated the study of mechanics in Cambridge
ag coach 7 and examiner in the ‘‘ tripos.” Somewhat later Helmholtz?
developed the same equations as the basis of his theory of monoeyeclic and
Polycyclic systems, a theory which he intended to use in the solution of
the fundamental problems of thermodynamics.

We subdivide the degrees of freedom of the system into two groups.
One group, containing f-—r degrees of freedom, can be described by Lag-

range’s position and velocity coordinates

Qv Qo - - - 953 G5 9 - - - G5

and the other, containing » degrees of freedom, is to be represented in terms
of Hamilton’s canonical variables

Qf—rt1s Qf—rt2s » + - 955 Proptt> Proptar - - - Py

Instead of the Lagrangian L or the Hamiltonian H we now construct a
Routh function B, which is to be a function of the 2f variables enumerated
above and, for the sake of generality, of the time as well:

(1) Rt a9 ... 'rE 91 Qos - - - Qf—rspf—r-l-la S pf)'
E is to be defined by the equation

f

(2) B= Z Pl L@ g, - . 95> Qs - - - Qf)
k=f-r+1

We see that for r—f, R transforms to the Hamiltonian (41.1); for =0,
where the summation on the right vanishes, it goes over into the Lagrangian

(apart from sign). Evidently we could have replaced definition (2) of R
by the equivalent condition

f—r
) .
(2a) R=H({, q1, - - -9 D1+ - - Pf)— Z Pr I
k=1

f We now proceed as in Egs. (41.2) to (41.4). We form the total differential
°L B, on the one hand from (1),

3

In this connection we wish to mention the two volumes of Routh’s Treatise on the
Dy'namics of a System of Rigid Bodies; I, Elementary Part, II, Advanced Part.
113 15 a collection of problems of unique variety and richness. Routh first developed
his form of the dynamical equations in the prize article A Treatise of Stability
°f @ Given State of Motion (1877).

4 ]
Berliner Akad, (1884) and Crelle’s Journal f. Math 97.
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f for f
¢R R oR .. R
(3) dR= — di+ Z o0 dqy+ Z 5an dgx+ Z o dPps
k=1 k=1 k=f—r+1
and on the other, from (2},

! 7
(3a) dR = 2 dpet > prdgp—dL,
k=f—r+1 k=f-r+1

For dL we can use the expression (41.2b), which we shall, for greater clarity,
decompose into

S I—-r f
8L . : .
(3b) dL=ldt+ > prdgyt D pidit+ D prdgy
i1 =1 k=f—r+1

Substitution in (3a) causes the last term of (3b) to cancel against the midd
term of (3a), so that we are left with

f for S
ol : . .
(4) dR=—Zdt— > prdg— > ppd@t D dpdpi
k=1 k=1 k=f—r+1
A term-by-term comparison with (3) yields the relation
oR aL
&~ o

and the scheme of equations given below:

for k=1,2, ... f—r for k=f—r4-1, f~r+2, ... f
b R T
(5) k gy k gy,
2R . oR
Pr=" g, 9= 2p,

The f—r equations on the left are of the Lagrange type with L= —..R-,
whereas the r equations on the right are of the Hamiltonian type with
H=R.

The application of these equations to cyclic systems, which Routh had
in mind when he formulated them, proceeds as follows: we assume thaﬁ
the coordinates of the second group are cyclic, so that, from p. 197, they
do not occur in the Lagrangian; in that case neither do they occur m th@
Routh function. The associated p;, are then constant {from the upper equatl
of the right group of Routh’s equations (5) or, as remarked on P- 1
from Lagrange’s equations]. We can now replace these constant values o3
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the Pis and, with the help of Eq. (41.1¢), .those of the (generally not constant)
associated g in Eq. (2)-. We thus obtain a Routh function which depends
only on the f=7 coordinates of the first group of ¢; and ¢;. For these
coo}dinates the left group of Eq. (5) above is valid. We have, therefore,
reduced the problem to f—r equations of the Lagrange type.

Routh used his method chiefly in the difficult problems of the stability
of given states of motion. Let us instead illustrate the method with a
reasonably simple example, that of the symmetrical top. The cyclic
soordinates of this doubly cyclic problem are the Eulerian angles ¢ and if;
according to Eqs. (35.15) to (35.17), we have

-, : wf M’ M —M’ cos 8 y M — M cos 8
p¢¢+p¢-!,[1=M( I, —cos ¢ I, sin% @ )+M I,sin*6

lez

4+ (M'—M’" cos 0)*
I, I;sin?0 '

by virtue of (35.13) the Routh function then becomes

M (M—M7cosO)  Iygy (M'—Mcos6) M
I, I, 5in° 0 2 ST, sm® 0 21,

R— +Pcos 8

I,; M"  (M’'—M" cos 6)2
—~—24+6(0), 0= 5T, + ST smid +Pcos 8 .

With g,= 0, the lower equation in the left group of our present Egs. (5)

then yields

pp=1,0
and the upper equation of the same group gives
(6) I 152 - %} ’

which is, of course, in agreement with the ‘“ generalized pendulum equation
(35.19). This example may serve to illustrate the usefulness of Routh’s
method, particularly for problems more difficult than the one presented.
In 1891 Boltzmann gave a series of lectures on Maxwell’'s electro-
agnetic theory at the University of Munich. He devoted his first lectures
:2 tfhe detailed consideration of a doubly cyclic mechanical system in order
Ulustrate the mutual inductive effect between two electrical circuits.
© carefully worked mechanical model, consisting mainly of two pairs of
OizeIled gears with centrifugal governors, is preserved in the museum of
whic I?S_tltute. .To us it seems much more complicated than Maxwell’s theqry
s It was mf;ended to illustrate. Hence we shall not use it to clarify
eory, but instead take advantage of it in an exercise on the differential

of . e ey e e T ]
an &utomoblle, to which it is similar in its essential features.




226 The Theory of Hamilton VIIL.

Let us finally generalize the mathematical formalism which led us frg
Lagrange’s to Hamilton’s and to Routh’s equations. We consider a funct
Z of two variables (or two sets of variables) z and y, and let

(7) dZ (x,y)=Xdx-}-Ydy.

If we wish to replace x, y by X, Y as independent variables, it is convenien
to consider, instead of Z, the ¢ modified function ”

(8) U (X, V)=2X+y¥—Z (z,y).
Indeed a differentiation of (8) at once gives, in view of (7),
(9) dU (X, Y)=«xdX+ydY.
Egs. (7) and (9) are identical to the “ reciprocity relations ”
oz oz
ox ﬁXs 5?; = Y’
(10)
ol oU

ﬁzx, g?zy

If, on the other hand, we wish to replace only one of the original variable
say y, by its *“ canonically conjugate ” ¥, we shall have to ““ modify ” (8) 1o

(11) Vix, ¥)=yY--2,
which yields

(12) av(z, Y)= ~ Xde+ydY
with the “ reciprocity relations ”

ov 24

(13) w=—X, =y

The transition from Z to U can be compared with that from Lagrange
Hamilton, that from Z to V with the transition from Lagrange to Routh.

Such a change of independent variables and the attendant modification
of the characteristic function is called a Legendre transformation and plays.
an extensive role in analysis. We have mentioned it chiefly in order to be
able to refer to it in our study of thermodynamics (Vol. V).

§ 43. The Differential Equations for Non-Holonomic.
Velocity Parameters

Whereas the differential equations considered so far were all modeled a,ft,et

those of Lagrange for generalized coordinates, the theory of the spinning

top brought us in contact with equations of an euntirely different, mut

simpler structure, viz., Euler’s Eqs. (26.4) for the angular velocities «1
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s and ws. Let us determine what relation they bear to Lagrange’s equations.
The difference between the two types stems from the fact that the

), Wy @3 ATE not holonomic coordinates like the 8, :,!;, c,-b, but linear functions
of these which are not integrable with respect to £. The connection between
them is given by Eq. (35.11). Let us immediately consider the unsymmetrical
top with kinetic energy

1
(1) T= §(Ilw12‘|'12“’22+13w32):

and for brevity restrict ourselves to the case of a top under no forces.
We start out with Lagrange’s equation for the ¢-coordinate

¢or _ or
(2) dtog  op
According to (35.11)
doy _fwy_ ws__
op o4 T e
Jw Su, Owy
BT a9 50
so that, in view of (1),
B_T . dwl % _
aé—Il +I a¢+I waad I3 ws,
8T dw, dw, Bw,

% lwl g +I2w2 é¢ —|_I3 Wy 3o a¢ (I I)wl Wa.
From (2) we then have

duv,
(3) I, = (I~ 1) w; w,

This is the third Euler Eq. (26.4).
A similar calculation for the §-coordinate yields
‘?._ _ Qwy _ _ o Bug _
= cOS ¢, Py sin ¢, v =1},

] : . ) 8 7o
ﬂ:zﬁcosﬂsmq‘;, 6%2:1[1008900835, a—?=—l,ltsm9.

From (1) we obtain

ol .
% =1, w, cos ¢— I, w,sin ¢,

aT =, w sind+1, w,eosqS)a,LCOSB I wy -,bsmB
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Lagrange’s equation

(4) 356 26 0

hence becomes

0=1,% cos o—1 dw”sintﬁ

1°ge 1de
(5) —~1I, w sin¢g (9‘5—{— u,k«cos 0)— 1, w, cos ¢ (q'H— qiscos 6)
+1; wy l[;SiIl 6. ‘

But according to (35.11),
qé—}— qb cos 0= w,, :,Lsin 6= w, sin ¢-} w, cos ¢,
so that the second and third lines of (5) can be written

(I3—I,) wg @y sin ¢— (I,— I;) w, wy cos ¢

and, together with the first line,
dw, d . .
(6) 0= {117&; — (Iy— I3)wgwg } oS¢ — {Iz"c%a - (13_11)“’3“’1}3111‘{5- .

Finally the Lagrange Equation

becomes, after suitable transformation of variables and in view of (3),

di, . dw,
m 0= {11 LS} R AP }smcﬁ—-— {12—;;’7 Ly I})wy wl}cos¢.

It follows from (6) and (7) that both {} must necessarily vanish, so tha
we obtain the first and second Euler equations {26.4). :

The transformation which we have carried out for one specific examp2e:
can be performed quite generally® in the case of an arbitrary number of
non-holonomic velocity parameters defined as linear (or more general).
functions of real velocity coordinates. If, as in the case of the rigid body:
the kinetic energy takes an especially simple form when expressed in terms
of these parameters, such transformations can be of signal value for the;
integration of the equations of motion; they can also be useful in thaw

they may satisfy non-holonomiec conditions. Boltzmanu found it neces
4_______._-‘

5 Cf., in particular, G. Hamel, Math. Ann. 59 (1904), and Sitzungsber. der Berl. M.
Qes. 37 (1938). Furthermore, Encykl. d. Math. Wiss. IV.2, Art. Prange No-
and ff,
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t0 introduce the components of momentum corresponding to non-holo-
nomic velocities in the kinetic theory of gases. He called these components
«« momentoids.”

§ 44. The Hamilton-Jacobi Equation

At the beginning of the previous century the most burning question of
theoretical physics was, “ wave theory or corpuscular theory of light? >
The wave theory was founded by Huygens and, at the time mentioned,
found its confirmation in Thomas Young’s discovery of the phenomenon
of interference. The corpuscular theory, on the other hand, had Newton’s
seemingly authoritative backing. W. R. Hamilton, astronomer and profound
mathematical thinker, was just then engaged in a study of the paths of
light rays in optical instruments. The results of these studies® began to
appear in print in 1827, at about the time at which the two greatest advocates
of wave optics, Fraunhofer and Fresnel, died at almost the same early
age. Hamilton’s work on general dynamics, the results of which we shall
briefly summarize in this section, came somewhat later, but it is intimately
related to his investigations in ray optics”.

Let us add parenthetically that as a result of Planck’s discovery of the
elementary quantum of action the above-mentioned question must now be
posed differently. We no longer ask, ““ waves or corpuscles? ” but state,
“ waves as well as corpuscles ! It seems at first sight impossible to reconcile
these apparently contradictory concepts; actually they are complementary
rather than contradictory aspects both of optics and of dynamics. Their
reconciliation, as Schrodinger has recognized, results from a logical extension
of Hamilton’s ideas and leads to wave or quantum mechanics.

Ray optics is the mechanics of light particles; in optically inhomo-
geneous media the paths of these particles are by no means straight lines,
but are determined by Hamilton’s ordinary differential equations or
Hamilton’s principle which is equivalent to them. From the viewpoint of
Wave optics, on the other hand, the rays of light are given by the orthogonal?
trajectories of a system of wave surfaces or wave fronts. According to
Huygeny’ principle, these wave fronts are parallel surfaces. Hamilton under-

* Treatises on ray optics, Trans. Roy. Irish Acad. 1827, with supplements of 1830
and 1832. His work on dynamics appeared in the Trans. Roy. Soc. London 1834
and 1835.

! Il’% the formulation by Jacobi this connection was lost, It was newly worked out
m 1891 by F. Klein (Naturforscher-Ges. in Halle ; Ges. Abhandl., Vol, II,
pp. 601, 603).

This is true of optically isotropic media. In enisotropic media such as crystals
the orthogonality between ray and wave front is no longer an ordinary Euclidean
one, but a non-Euclidean, generalized tensor orthogonality.
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took to represent the family of wave surfaces by a (perforce part
differential equation and to extend this method to the polydimensi
space of the g, of an arbitrary mechanical system. As we shall see, the fan
of wave surfaces is then given by S=-const., where § is the least actig
function of Eq. (37.1). The trajectories orthogonal to the surfaces
determined by the equation

‘ es
1) pe=25-

(1) Conservative Systems
For the moment we deal with a mechanical system in which energy
conserved and can be resolved into a kinetic part 7' and a potential part
T, V and H are hence not explicitly dependent on ¢.
We start out with Eq. (37.9), and replace ¢W in the right member b

—8V=8(T-E)=0T-3E.
The right member of (37.9) then becomes
2) 28T +2T 25t — 8.

Next we transform the left member of the same equation to generaliz
coordinates p, g,

d
(3) 520 Pi
Equating (3) and (2) yields
d d
(4) 287427 5.8t~ SE= 3> p3,8qy

We integrate (4) with respect to ¢ between the limits 0 and ¢ to obtain

(5) 88— t8E=> pdg— > oo,

where S is defined by Eq. (37.1) and p, and 8g, refer to the lower limit
t=0 of the integration, p and 8¢ to its upper limit #. .
Eq. (5) indicates that we must regard the action integral § as a function
of the initial position g,, the final position ¢ and the energy E, i.e., that we
are to use the arbitrarily assigned total energy E as variable in place of
the time ¢:

(6) 8=8 (g, g0 £)-
According to (5), the motion as a function of time is then given by
a8

(7) t= 35’
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where ¢g and ¢ are held fixed. If, instead, we keep ¥ fixed and vary either
g or o (5) yields
as as

(8) P=3" Po= "oy
The first of these relations is in agreement with our assertion (1); as for
the second, we shall soon transform it to a more convenient form.

It must be admitted that we have not gained much in the way of know-
Jedge of the motion as long as § is not known in the form (6). Let us, how-
ever, recall the equation of energy

Vi (Q,P):E,

where we substitute the value of p from Eq. (8) to obtain

(9) H (q,gi;)=E-
We regard (9) as the determining equation for the characteristic function S.
It is called *“ Hamilton’s partial differential equation’ or the Hamalton-
Jacobi equation for conservative systems. With T homogeneous of second
degree in the p (V can be assumed independent of the p), it is of second
degree and first order.

Let us suppose that we have found a complete integral of this equation,
i.e., a solution that contains a number of assignable constants equal to the
number of degrees of freedom of the problem. Call these constants

a1, 0(2, « s Otf.

Since S itself does not occur in (9), it is determined by (9) only up to an
additive constant. One of the above constants of integration, say o, is,
therefore, in excess and can be replaced by an additive constant which
remains unassigned. We may replace «, by our energy parameter , so
that the complete integral can be written in the form

(10) S=8(q, E, s, o3, . . . u;)+const.

The classic method used to arrive at such a complete solution is that
of separation of variables—a method often, but not always, applicable. We
shall deal with this method in § 46. In § 45 we shall show how Eq. (10)
leads to 3 knowledge of the motion of the system.

(2) Dissipative Systems
We shall now adopt the general viewpoint that the Lagrangian L and
hence the Hamiltonian H depend on £. In general it is then impossible to
deeompose L and H into T and V; if, in particular, a potential energy V
Oes exist, it will have to depend on the time. This case is important for
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the perturbation problems of astronomy and quantum mechanics, T
exists then no energy principle, hence no total energy constant E,
follows that we cannot use the principle of least action, but must rey
to Hamilton’s principle. Consequently we define a characteristic functioy
S*, given by the integral occurring in Hamilton’s principle,

¢
(11) 8’*=J‘t Ldt,

and regard S* as function of the initial and final positions and of the tim
of travel t,

(12) S*=_8* (q’ qO:t)'

This is to be compared to Eq. (6) where the constant total energy E (non'l-
existent in the present case) took the place of ¢. '

Let us now form %g: » first by means of (11),

dS*

(13) B 1,
next by means of (12),

ds* a8*, o8* . as*
(14) @ = 2agIta = 2 Pt 5

The relation analogous to (8) used here,

aS*

(15) P2

is easily verified. Merely differentiate (11) with respect to g; and reca

Eq. (41.1e). _

In view of the general definition (41.1) of H, the comparison of (13) and
(14) now yields

as*
(16) o L H=0;
from Eq. (15) we have, therefore,
o8+ aS*

17) aT+H(q,a—q-, )=o.
This is the Hamilton-Jacobi equation in general form. It includes our earlier
Eq. (9) as a special case. To show this, let us assume, as in (a), tha
H is independent of . From (17) it follows that 8* is linear in ¢. Hené

we put
S*=qai+b
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and conclude from (16) that—a=H , i.e., equal to the energy constant B
which now exists; b proves to be identical to our former characteristic
function S. Thus Eq. (17) reduces to the special form (9) in this case.

The remarks made in (a) concerning the integration of (9) apply equally
well to the more general Eq. (17). The complete integral of the latter now
contains f-r1 constants, one of which is again additive. Instead of (10)

we can then write

(18) S*=8*(q,1, oy, &3, . . . of)+const.

§ 45. Jacobi’s Rule on the Integration of the Hamilton-
Jacobi Equation

We stated in connection with Eqs. (44.8) that the second of these did
not lend itself to ready integration. The reason for this is that we integrated

our partial differential equation, not in the form (44.6), but in the forms
(44.10) and (44.18), respectively. In Eq. (44.7),

as
(1) t= 75>

on the other hand, we had obtained an equation describing, very directly,
the motion in time. We shall now prove that if we differentiate S with respect

to the constants of integration a,, «g, . . . «; instead of E, we obtain
equations

o8
(2) ﬁk=m’ k$2, 3,...f

which describe the geometric configuration of the path of the system, provided
that we regard the B, as a second set of constants of integration. This is
Jacobi’s rule for the case (a). In the case (b) it takes the even simpler form

a8*
(3) Bk=aak: k=1,2,...f.

Here we have f equations of uniform structure which give both the temporal
and the spatial course of the motion of the system.

We can introduce the same simplicity into case (a) by formally writing

3 o8
(3a) Br= ety
where we have put {=§; and E=q«,.
We shall restrict our proof to case (a). Let us recall the definition (41.11)

°l a contact transformation, which we shall write, for purposes of the
f()llo“ring’ 1
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(4) dF (g, Q)= D prdar— D PrdQy.

Let us compare this with the total differential of the characteristic funet;g,
(44.10),

ds (g, B, a):zas qu—|—aEdE Z 23 Ao,

k=1

which becomes, with substitution from (44.8) and (2), (3a) of this section,

f I
(3) dS (g, )= prdgp+ D By doy.
k=1 E=1

This equation agrees with (4) if we identify
(6) FwithS, @Q,with oy, P,with— .

Now we know that, by means of a transformation ¢, p;,—@.. P; satlsfymg
condition (4), we pass from Hamilton’s equations (41.4)

__ .

to Egs. (41.12),

p.—_°H _ oH
k 8Qs 2 aP,

In view of (6) these become, in our case,

(7) mﬁk———g_ic, ockz»—g%.
But from (41.10),
H(Q,P)=1 (g, p),
or, by virtue of (6},
H (a,— B)=F—=uqy.
It follows that

(9) ’ @ . 1 fOT k=1, 0 for k=1,
dap~ | 0 fork>1; aﬁk iOfo’r k>1.

Thus Egs. (7) become

1 for k=1, . 0 for k=1,
(10} {Ofor E>1; Yk Z{Ofor k>1.

These equations tell us nothing new regarding the «;; they merely cont
that the «; are constants of integration. The same can be said of
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equation for By; from B;=1 we simply have B,=t (to within an additive
constant of no importance), nothing new in view of Eq. (3a). Egs. (10)
for Pr with £>1, on the other hand, furnish the proof of Jacobi’s rule;
they state that, like the «, the B, are integration constants.

The proof can be extended without important changes to the case (b)
prOVided we make the definition of a contact transformation somewhat
noTe general. Since we do not need this result in the following, we shall
not be detained by it.

§ 46. Classical and Quantum-Theoretical Treatment
of the Kepler Problem

In this section we wish to show how the Hamilton-Jacobi method of
integration leads unambiguously and directly to the solution of the planetary
problem of astronomy. We shall, furthermore, discover with surprise that
the same method is made to order for the requirements of atomic physics
and leads in a natural way to the (older} quantum theory.

We begin with the Lagrangian of the two-body problem with fixed sun
M, expressed in polar coordinates,

m) L="0 (2 429 - G 2
from which we calculate the momenta
(la) p,=mr, p¢:mrzq§.

S}1bstit.ution of these in (1) and a change of sign in the potential energy
yleld the Hamiltonian

(1b) Hzﬁ(prr;lapzsﬁ)—GMM

r

and, from (44.9), the Hamilton-Jacobi equation

(2) (2:)2+_}(g§)2 ~2m (B ++6™5).

Let us apply in this example the method of *“ separation of variables ”

mentioned on p. 231.

We try a solution of the differential equation (2) of the form

3) S—R-1®
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in which R depends only on r and & only on ¢. If we replace the right mep,
ber of (2) by the general function S (r, $), we obtain

(3a) (F) +5(22) s ).

In general, such a relation does not hold. If, however, f is independent of ¢,
as in our case, we need merely put % equal to a constant, say ¢ (called_;
the ““ separation constant ”). R is then determined by the equation

@ () =1 - &,

which is solved by quadrature, yielding a complete integral. The assumptio
that f is independent of ¢ is evidently equivalent to the fact thag §
our case ¢ is cyclic, that is, it does not occur explicitly in the differenti
equation. We see that the method of separation of variables is based ¢
special symmetry properties of the given differential equation, symmet
properties which are often, though by no means always, realized.

We now follow the general pattern of § 45, put C=«, and separate (2 .
into

() | 53 =%
®) g;fz[zm(ma%)_j:;]?

Eq. (5) is the law of conservation of angular momentum, that is, Keplet’
second law; the separation constant o, is the constant angular momentum
essentially identical to the areal velocity constant used in Eq. (6.2). Eq. (6
gives the variable radial momentum. A
To calculate the characteristic function 8, we integrate (5) and (6
and form (3). Replacing E by «,, we obtain

2

r

(7) Szf [Zm(al—!—Gﬂg—d)—-;z]&dr-}-azg&-{—const.

To

The lower limit of integration can be chosen arbitrarily since it reres

affects the magnitude of the additive constant. .
Let us, for the present, focus our attention on the geometric trajecto

i.e., on Kepler’s first law. To do this we follow (45.2) and form

al 1%
(8) ﬁz=§§=—-a2fr [2m(a1+G”i—M)——rf] dr + .

r 2
To

yI1!

It 1
intef

Here

and

80

From
(14)

Where



y111.46 Quantum-Theoretical Treatment of Kepler Problem 237

It is evidently convenient to introduce s=% instead of r as variable of

integration and to rewrite (8)
s -+
By— ¢ = azfs [Zm( al-{-GmMs) — ocgsz] ds
[
(9)

I ds
- 8 {(s ~ smin) (Smax — §)]%

Here 8, and 8y, are the reciprocals of the distances from sun o aphelion
and perihelion. Comparison of the two integrals yields

s s . 2ma,
min ®max ag
(10)
2Gm2 M
8min + Smax = ol :

Now we wish to obtain (9) in convenient trigonometric form; the trans-
formation

(11) S:'S‘min“;'é‘max_{_-?max;-ﬂmin ,
suggests itself. It takes s=s .. into w=-41 and 8=8pin into u= 1.
From (9) we then have
¥ du
12 —d= __au
( ) Bz 95 fuo(l_uz)}

and, making the assignable lower limit of integration equal to 1,
(13) ¢~ By=cos7lu, u=cos(d— By).

Finally we return from u to s via (11) and take note that, according to
P.- 42, Fig. 7,

1 1
‘min= 21T’ Smax™ al=¢’
80
1 €
S=aa-etaa= ety U
From (13) we then obtain the equation of an ellipse in the familiar form
(14) g L. Ltecos(g—p,)
r

a(l—e¥)

Where the constant Bz can be absorbed into the definition of é.




238 The Theory of Hamilton

For experimental reasons the astronomer is interested not so myg
the geometrical form of the trajectory as in the motion as a funectjq
time. Here again the Hamilton-Jacobi method gives the answer in
most systematic fashion, namely, by means of Eq. (45.1),

_ o8 _a5
TR éa,

{

from which we obtain, after substitution of the variable s,

(15) t=~"—’fs ds

=2 o 82 [(S‘Smin)(é'mast)]_?

With this equation we complete our former treatment in § 6, where 4
position of the planet as a function of time was left undetermined. Wi
the help of the “ eccentric anomaly ”’ of Problem 1.16 as the new variah
of integration [its symbol % should not be confused with the auxilia,ry
in Eq. (11)] equation (15) can be solved by elementary integration
leads directly to the celebrated Kepler equation

nt=uU— eSIN U

mentioned in the cited problem.

It is well-known that two- and several-body problems play a centr
role in modern atomic physics as well. In the hydrogen atom the electre
moves about the nucleus, the proton, like a planet about the sun. He
too, the Hamilton-Jacobi method has proved of surprising value.
literally shows us the point at which guantum numbers must be introduce

In the older quantum theory, whenever the kth degree of freedom wi
separable from the remaining ones, one defined a phase integral (also call
“ action variable ”’) of the 4™ degree of freedom given by

(16) Iy = f P95

The integral was to be taken over the whole range of values of the variab
- One then asked that J, be an integral multiple of Planck’s elemen:
tary quantum of action (cf. p. 181),

(16a) Jy = nh.

With p, in (16) expressed in terms of the characteristic function 8, 0
obtains

s

48, is the k' “ modulus of periodicity > of the function 8, i.e., the ch
suffered by S when g, runs through a complete cycle of its values.
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The electron of a hydrogen atom has coordinates ¢,=¢ and g,=r.

differential equation (2) for S and its solution (7) can be transferred

from astronomy to atomic physics, provided we replace the gravita-
62

potential energy by the Coulomb energy - —-

The
directly
tional

Since the range of the coordinate ¢ extends from 0 to 2=, we obtain

from (7) and (17)
(18) AS¢ == 21 oy = Ngh.

ng is the azimuthal quantum number; w,, as we know, is identical to the
azimuthal moment of momentum pg.

The range of values of the r-coordinates extend from r_, to r,. and
back. Egs. (7) and (17) therefore yield

Tmax . A ;

(19) a5,=2| [em(E )i ] dr=nt
"min

n, is the radial quantum number. The quadrature is best performed by

complex integration in the r-plane; once this is done, (19) becomes

. me?
(20) —ngh + Zm,m = n,h.

The energy of the hydrogen electron in the quantum state n=n,+ng¢ is,
therefore,

(21) ; 2mtm el

T ThIn?

It is negative because the energy was set equal to zero for infinite electron-
proton distance (see the above expression for the potential energy).

Eq. (21), together with Bohr’s postulate of the radiation of energy in
quantum jumps, led to the first understanding of the hydrogen spectrum
(the so-called Balmer series) and from there to the modern theory of spectral
lines in general.

Present-day developments of atomic theory have gone beyond the
dfescription of electronic orbits here presented. As mentioned at the begin-
ning of § 44, investigations following Hamilton’s line of thought have
resulted in a more profound wave-mechanical conception of atomie processes.



PROBLEMS
Chapter I

Ll. Elastic collision'. n equal masses M are placed in contact with
each other along a straight line. Two masses M » both having veloeity o
collide with the row of n masses from the left. Evidently the laws ¢
momentum and energy are satisfied if the two masses on the left transfe
their velocities to the last two masses on the right. Show that these laws
cannot be satisfied if only one mass is expelled on the right, or if the twc
last masses on the right are set in motion with different veloeities Uy, ¥y

L.2. Elastic collision with unequal masses. Let the last mass m on the
right be smaller than the remaining masses. Let a mass M collide from
the left with velocity v,. Show from the principles of energy and momentum
that it is impossible for m to be the only mass set in motion. Ifit is assumed
that only two masses are set in motion, what must be their velocities?

L.3. Elastic collision with unequal masses. Let the last mass M’ on the;
right be greater than the remaining ones. Make the same assumptions as;
in Problem 2, taking notice, however, that the next-to-last mass on thé
right transfers its momentum toward the left. What is the velocity of

M’ and of the first mass M at the left end of the row? What happens if
M’ is very large?

m, of velocity v, collides centrally with an atom M initially at rest. T
atom 1is excited and is raised from its ground state to an energy level
units above it. What is the minimum initial velocity v, that the electron
must have?

You will find one quadratic equation each for the final velocities » of
the electron and V of the atom. The minimum value v, results from the
requirement that the radical occurring in the solutions for » and V be real-_
The value of v, is somewhat higher than would be expected if only th"_
conservation of energy were called into play, although the difference is nob,
observable because the ratio 3 /m > 2000 is very high.

1t is essential that the student carry out the experiments described in Problems I.1
1.3 himself. This can be done with coins on a smooth support, with elastic spher
so suspended on strings that they touch in the position of rest, or finally
marbles in a trough.

240

1.10
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Tf the colliding particle is of the same, or approximately the same, mass
a5 the struck one, the required minimum energy is about twice that expected
from conservation of energy alone.

1.5. RKocket to the moon. A rocket with continuous exhaust shoots
vertically upward. Let the exhaust velocity be a relative to the rocket
and p=— m be the mass expelled per second, and assume both constant in
time. Assume that the motion occurs under constant gravitational accelera-
tion g, friction being neglected. Set up the equation of motion and integrate it
under the assumption that the initial velocity of the rocket on the surface

of the earth 1s zero. If ,uzi(l)—oof the initial mass myand a=2000 meter- sec™?,
what height has the rocket reached at t=10, 30, 50 sec.?

1.6. Water drop falling through saturated atmosphere. A spherical water
droplet falls, without friction and under the influence of gravity, through
an atmosphere saturated with water vapor. Let its initial radius (t=0)
be c, its initial velocity, v,. As a result of condensation the water drop
experiences a continuous increase in mass proportional to its surface; as
will be shown, its radius then increases linearly with time. Integrate the
differential equation of the motion by introducing r instead of ¢ as indepen-
dent variable. Show that for c=0 the velocity increases linearly with time.

L7. Falling chain. A chain lies pushed together at the edge of a table,
except for a piece which hangs over it, initially at rest. The links of the
chain start moving one at a time; neglect friction. The energy written in
the usual form is here no longer an integral of the motion. Instead, the
impulsive (Carnot) energy loss must be taken into account in writing the
balance of energy.

L8. Failing rope. A rope of length [ slides over the edge of a table.
Initially a piece z, of it hangs without motion over the side of the table.
Let  be the length of rope hanging vertically at time ¢. The rope is assumed
to be perfectly flexible. Show that the principle of energy in the form
T+ V== const. gives an integral of the motion.

L9. Acceleration of moon due to earth’s attraction. The moon’s distance
to the earth is about 60 earth radii. Assume that the lunar orbit is a circle,
once traversed in 27 days, 7 hours and 43 minutes. From this the accelera-
tion of the moon toward the earth (centripetal acceleration) can be calcu-
lated, Comparison of this value with that from Newton’s law of gravitation
8ave the first confirmation of this law.

v L10. 7%, torque as a vector quantity. Consider a rectangular coordinate
fg 1?tem (%, y, 2), with r the radius vector of the point of application of a
frofrf F. We now pass t(? a second coordinate system (2, y', 2'), obtained
OTicss the former by rotation. Show that the moment of force F about the

g of the first coordinate system transforms like a vector, i.e., like
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r=(x, y, z). To prove this one must assume that both coordinate systen
are of similar sense (both right-handed or both left-handed).

L11. The hodograph of planetary motion. From Eq. (6.5) with 4
the hodograph of planetary motion is given by

E=—i=—lsing, n=y= +cosg 4 B,

where M is the mass of the sun, C' the angular momentum constant, 4
the true anomaly (cf. Fig. 6). Show that the trajectory is a hyperbola op
ellipse, depending on whether the “ pole ” ¢=7=0 of the hodograph
excluded from or included by the hodograph. Also describe the limiting
cases of parabola and circle in terms of the position of this pole.

L12.  Parallel beam of elecirons passing through the field of an iop. s
Envelope of the trajectories. A source located at mfinity shoots off electro
(charge e, mass m) along parallel paths with constant initial velocity v
An ionized atom A4 (charge E, mass M) is fixed at the origin. If e and
have the same sign, what area surrounding A is never touched by th
electrons?

Take the y-axis as the direction of the incident particles; treat th
problem as plane. It will be easiest to write the trajectory of an electron :
in polar coordinates with 4 as pole of the coordinate system and focus of -
the hyperbolic trajectory. The boundary of the above-mentioned area i ;
obtained as the envelope of the electronic trajectories. Because of M >m
one can consider 4 to be at rest.

Show that if e and E have opposite signs, the envelope of trajectories |
seems to yield the same boundary, but that it is now devoid of physical :
meaning.

L13. Elliptical trajectory under the influence of a central force directly
proportional to the distance. Consider a mass m under the influence of a
force directed toward a fixed point O (center of force)

F=—jr
._).

(r=0m, k=const.). Show that the following three laws hold for the motion
of m:
1. m describes an ellipse with O as center.
2. The radius vector r sweeps out equal areas in equal times.
3. The period 7 is independent of the shape of the ellipse, depending
only on the force law, i.e., the values of k and m. "

L14. Nuclear disintegration of lithiwm (Kirchner, Bayer. Akad. 1933)-
If a hydrogen nucleus (proton, mass m ) collides with velocity v, With & S
nucleus of L:i? (lithium of atomic weiglt 7), the latter splits into two a- :5'_ :
particles (mass my=4 m,). These two «- particles fly off in almost (but _;
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not exactly) diametrically opposite directions. Assume that the «-
particles fly off symmetrically with respect to the line of collision, and with
equal velocities, and calculate the angle 2¢ between them. Notice that in
addition to the kinetic energy £, of the proton, there occurs another energy
E liberated as a result of the mass defect, which is greatly in excess of k,
and is likewise transmitted to the two «- particles. Thus the final answer
for cos¢ contains not only m,, and m, but also the kinetic energy E , of the
proton, and K.

In the units customary in atomic physics, £=14-10% ev (electron-volt).
In an experiment K ,=0.2110% ev; what are the values of v, and 24 ?

1.15. Ceniral collisions between neutrons and atomic nuclei; effect of a
block of paraffin. Neutrons are slowed down but little by a lead plate
50 cm thick; a layer of paraffin about 20 cm deep, on the other hand,
absorbs them completely. This can easily be understood if one remembers
that in a central collision the kinetic energy of the neutron (mass m=1)
is completely transferred to one of the hydrogen nuclei of the paraffin
(proton mass M;=1); whereas the amount of energy transferred in a
central collision with a lead nucleus (mass M,=206) is hardly worth men-
tioning. Draw a curve showing the kinetic energy which the initially motion-
less atomic nucleus (of mass M) receives from the neutron (mass m)in a
central collision, as a function of the ratio M /m.

I.16. Kepler's equation. The secular variation of the motion of the
planet in its orbit is determined, in differential form, by the principle of
angular momentum. In order to obtain the secular variation in integral
form, one can, following Kepler, proceed as follows (Fig. 55).

Draw a circle about the v
center of the ellipse with the

major axis as diameter. We #

now associate a point K on E

the circle with the planet

located at point E of the

ellipse at the time ¢ If we P “ P20 u=Q_
take the principal axes of the P} S M L A E
ellipse as coordinate axes,

point X has the same ab-

scissa as K. Whereas E is

given by its polar coordinates

7, ¢ (pole 8), K is deter-

mined i

a by polar coord..mates Fie. 55. Kepler’s construction of the eccentric
» % (pole 3f). Thus with the anomaly % and its connection with the true

true anomaly ¢ we associate anomaly .

\

b
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the eccentric anomaly w (as in the text, we count both from aphelig;
the direction of motion, at variance with astronomiecal usage, where.
anomalies are counted from perihelion, though, of course, alsg in
direction of motion of the planet).

The coordinates x and y of the planet K can be expressed, on the o
hand, in terms of » and ¢, and on the other, in terms of one of the Sem
axes of the ellipse and the eccentric anomaly u, so that, with K give
E is also given. The course of the motion of point K on the circle ig th'f
determined by the celebrated Kepler equation '

nf = (4 — esinu).

Here ¢ is the eccentricity of the elliptical trajectory, and n=(%u£)i= !

where a, b are the semi-axes, @ the gravitational constant, M the mass ¢
the sun, C the areal velocity constant.

In order to derive Kepler’s equation, start out with the polar equatig
of the ellipse, referred to S as pole and the ray SA4 (aphelion) as polar a

P

T=1- €cosg

£

where p is the “ parameter ”” a(l—e?). Now use the transformation rél
tions referred to above to introduce u in place of ¢, and obtain the equatigls

r=a(l+4 e cos u).

Differentiation of these two equations, elimination of r and ¢, introduectig
of the principle of angular momentum and of Eq. (6.8) finally yield Kepl
equation by an integration, provided we stipulate that at =0 the pla
is at aphelion.

Chapter II

IL.1. Non-holonomic conditions of a rolling wheel. A sharp-edged wheel, @
radius a, rolls without sliding on a rough plane support (think, for example,
a hoop rolling on an even road). Its instantancous position is determined b,
assigning values to

1. coordinates z, y of the point of contact of the wheel with the suppd
referred to a rectangular coordinate system z, y, z whose zy-plane coinok
with the support;

2. angle 8 between axle of wheel and z-axis;

3. angle i formed between the tangent to the wheel (intersection
the plane of the wheel with that of the support) and the z-axis;
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4. angle ¢ that the radius toward the instantaneous point of contact

of the wheel makes with an arbitrary fixed radius, this angle to be counted
ositive, say, in the direction of rotation.

In finite motion the wheel therefore has five degrees of freedom. The
mobility of the wheel is, however, restricted by the condition of pure rolling
(without slipping) brought about by the static friction between wheel and
sipport; indeed, with the wheel moving along its instantaneous direction,
the distance ds moved along the direction of the tangent must equal a §¢.
By projecting this equation on the coordinate axes we then obtain the
conditions of constraint

(1) dr=acos §i6d, Sy=asin i d¢

which the displacements 8z, 8y and 8¢ must satisfy.

Hence the rolling wheel has only three degrees of freedom in infinitesimal
motion.

Show that conditions (1) cannot be reduced to equations between the
coordinates themselves. To do this, show that the existence of an equation
f(z, y, ¢, ¢)=0 [0 does not occur in (1)] is incompatible with conditions (1).

112, Approximate design of a flywheel for a double-acting one-cylinder
steam engine (~f. also § 9 (4)). A double-acting piston engine is one in
which steam is introduced alternately on both sides of the piston, so that
work is done during both strokes of a cycle,

Let us assume, for simplicity, that the steam pressure remains constant
during each stroke (full pressure or Diesel cycle), and let us, moreover,
suppose that the connecting rod is of infinite length. The variable torque

a8 a function of crank angle ¢ transmitted from the piston to the crank
shaft is then given by

L=1L,sin ¢

for the half-cycle in which the crank moves from the backward to the
fiead forward position [cf. Eq. (9.5)]. Here Ly is a constant; ¢ is counted
' the sense of rotation from the dead backward position. During the
Second half-cycle, from forward to dead backward position, under the same
ASsumptions as made above (viz., 1. double-acting engine, 2. operation under
full bressure, 3. infinite connecting rod), the torque changes according to the
;ame law, provided ¢ is now measured in the sense of rotation from the dead
Orward position.

Lét- the load on the engine be given by the constant torque W, corres-
Ez?‘dmg to & power of N HP with #n r.p.m. Thus the driving torque L is
vella-ble’ while the load torque W is constant. As a result the angular

-0ty of the engine fluctuates between a maximum value w_,, and a
mum value wg, its mean value w_, being given approximately by
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® max T @ min
W o=
m 2

It is the purpose of the flywheel to prevent the relative fluctuation, thag ig
the degree 3 of unbalance of the engine, given by

@ max — @ min
o=

m -
from exceeding a given limit. How great must the moment of inertia of
the flywheel be if the inertial effect of the moving masses (piston, piston
rod, cross head, connecting rod and crank) is neglected?

I1.3. Cenirifugal force under increased rotation of the earth. How fagt
must the earth rotate and how long would the day be in order that cen-
trifugal force and gravity just cancel at the equator? |

I1.4. Poggendorff’s experiment. From one end of the beam of a balance:
we suspend a weightless pulley which can rotate without friction. A
string U passes over the pulley; on one side the string carries the weight P,
on the other, the weight P-+p, where p is a small additional weight, just
as in Atwood’s machine. Initially p is fastened to the axle of the pulley.
by means of a thread ». On the other side of the balance these weights are
suitably equilibrated in a pan. The thread « is then burned. _

(a) With what acceleration do the weights P and P+-p rise and fall,
respectively?

(b) Is the beam of the balance displaced in this process?

(c) What is the tension in the string U?

11.5. Accelerated inclined plane. An inclined plane is moved in &
vertical direction according to a given dependence on the time. Investi-
gate the motion of a body of mass m sliding down the plane without friction;
in particular, consider the case that the inclined plane is moved with the
constant accelerations +g and —g.

I1.6. Products of inertia for the uniform rotation of an unsymmetricdl
body about an axis. An unsymmetrical body rotates uniformly about all
axis whose ends rest in bearings 4 and B. What reactions A and B must
be exerted by the bearings? Caleulate them from d’Alembert’s priIlCiPle;
show that they result from the total centrifugal force applied at the cen.tel'
of gravity and from the resultant moment of the centrifugal forces acting
on the individual mass elements.

From p. 55 we know the reactions caused by the weight of the body.
alone; we can therefore omit their effect here.

I1.7. Theory of the Yo-yo. A disk-shaped body of mass M and moment
of inertia I is provided with a deep symmetrical groove in the median pla
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erpendicular to its axis. A string is wound on the shaft of radius r in

the groove. The loose end of the string is held in the hand. One then lets
the body fall, with the string taut at all times. As the body descends, it
acquires 2 rotational acceleration until the string is unwound. Then follows
o transition stage, not to be considered in detail here, the result of which
:s that the body shifts from one side of the string to the other. The string
now winds around the shaft in the opposite sense, and the body climbs
with rotational deceleration, and so on. What is the string tension

(a) in descent?

(b) in ascent?
Assume that r is so small compared to the distance of the axis from the
Joose end of the string that the string can at all times be considered to be
vertical.

11.8. Particle moving on the surface of a sphere. A mass point moves
on the outside of the upper half of a sphere. Let its initial position z, and
initial velocity v, be arbitrary, except that the latter is to be tangential
to the surface of the sphere. The motion is to be frictionless, occurring
solely under the influence of gravity. At what height does the mass point
leave the sphere?

Chapter III

HI.1. Spherical pendulum with infinitesimal oscillations. 1In general,
the nodal points of the trajectory of a spherical pendulum advance during
the course of the motion. For sufficiently small oscillations, however, the
nodal points must be fixed, for we are then dealing with an harmonic
elliptical motion. Estimate in what order the advance d¢ of the nodal
points vanishes with vanishing area of the ellipse.

II1.2.  Position of the resonance peak of forced, damped oscillations.
I.n a forced oscillation with damping the maximum amplitude of oscillation
lies, not at w=w, as in the case of no damping, but at a value below w,
(cf. Fig. 33) depending on the amount of damping.

Find for what value of  |C| is a maximum.

[Show that the maximum of the velocity amplitude |Clw (or of the

time average of the kinetic energy) occurs exactly at w= wg. |

.III-S. The galvanometer. A galvanometer is connected through a
:Ejteh-“it}.l a direct-current source of constant EMF E. At time t=0,
tioens“ itch is leosed. After a sufficiently long time the galvanometer deflec-

! reaches its final value «,. What is its motion between the initial
Position of rest, =0, 2=0, and the final position, a=u,?
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Three effects have to be taken into account. First, an externa) torqu
proportional to the electric current and hence to the EMF acts on ¢
galvanometer of moment of inertia I. Second, there acts a damping torqug
proportional to the angular velocity, which tends to slow down the motion
Third, the torsion in the suspension acts as a restoring torque and is Pro
portional to the deflection «. Let p be the factor of proportionality of
the damping torque, w3 that of the restoring torque.

Distinguish and explain graphically the three cases

(a) weak damping (p < wy),

(b) aperiodic (“‘ critical ”’) damping (p= wy),

(c) strong damping (p > wy).

I11.4. Pendulum under forced motion of its point of suspension.

(a) A particle is suspended from an inextensible string and oscillate
without damping under the influence of gravity The point of suspensio
is moved along a straight horizontal line according to some given law o
displacement & = f(t).

What are the equations of motion of the system, the mass of the strin
being neglected? Derive them either from d’Alembert’s principle or from
Lagrange’s equations of the first kind. ‘

The equations of motion become considerably simplified if we pass
small oscillations, i.e., retain terms of only the first order.

If we make the additional assumption that the displacements of th
point of suspension are harmonic in time, the equations of motion can
easily be integrated. As the pendulum is set moving, say by a motio
of the point of suspension, its proper frequency is excited; the amplitud
of this proper frequency is gradually damped out (though we shall neglect
damping in the analysis), thus leading to a steady state of oscillation wit.
the same frequency as that forced on the point of suspension. Show tha
when the motion has thus become stationary, suspension point and mass
m move in the same sense below the resonance frequency, in opposite
senses above it.

(b) Make a similar analysis of the ease in which the point of suspension
is subjected to a vertical displacement 7, with special emphasis on the -
case that the acceleration of the point is constant. What is the period of
oscillation if the point of suspension is displaced with accelerations -+§ :
and —g?

IIL5. Practical arrangement of coupled pendulums, sketched in Fig. _56‘ :
Between two fixed supports 4 and B is stretched a weightless, ﬂembleé
and elastic wire. Its tension S is regulated by an adjustable weight &
attached to the loose end of the wire hanging over the angle iron B. Two
pendulums are suspended bifilarly at points C and D which divide the
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segment AB into three, let us say, equal parts. The bifilar suspensions,
indica-ted as simple suspensions in the sketch, enable the pendulums to
swing out with good accuracy in a transverse direction, i.e., normal to
the plane of the drawing. By increasing G the coupling between the two
endulums is made weaker (not stronger, as might at first be thought!).
In what is to follow, we shall assume the coupling to be weak, which means
that S is large compared with the weight of the pendulum bobs. We
further suppose the angles of deflection ¢, and ¢, of the pendulums with

Fic. 56. Wire ACDB is held taut by the weight G. It is deformed
into A34B or, for the opposite deflection, into A3’4’B, the deflection
being caused not only by the gravitational action on masses m,
and m,, but also by the inertial effects of the pendulums. The
latter are labeled 1 and 2, are of lengths 7, and I,, and suspended
bifilarly, so that they swing out normally to the plane of the
drawing (the bifilar suspensions are not shown in the figure}. ¢,
and ¢, are the instantaneous deflections from the vertical.

respect to the vertical to be small. (Refer to Fig. 56 for notation; 3" and
4’ are the deflections of the points of suspension C and D symmetrically
opposite to 3 and 4.) These angles are then approximated by

sin gy =¢;= xlzhlxs’ cos¢h=1

Sin ¢ = o= :”2;2“”4, cosd,=1.

With neglect of the y-component of the small oscillations we have for m,
and similarly for ms,,

) my g=2=8; cos ¢, =8, Mg g=5S; CO8 =8,

(2) mr =8, sin ¢, = "_;12(3;3_ 1), MyEo= — Sy s = 7%2—9(34‘"3:2)-
1 2

At the

points of suspension €' and D, S, and S, respectively must, at any
ant, be in equilibrium with the tension S; the latter is altered negligibly
€ by 8, and §,. This yields two more conditions between z,, Z,, %3 and
We can solve these for 25 and x, and substitute them in (2). We then

ingt
litt]
T 1
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obtain the simultaneous differential equations of coupled pendulumg:
Verify that these are indeed in agreement with Egs. (20.10).

IIL.6. The oscillation quencher. A system capable of oscillating jn the
z-direction (mass M, proportionality constant of the restoring force, K) ig
coupled by means of a spring {constant k) to a mass m, in such a way that
m, too, can oscillate in the z-direction. We require that when an externa] .
force P =ccoswt acts on the mass M, this mass M stay abt rest. What
conditions must be satisfied by the system (m, k)?

Chapter 1V

IV.1. Moments of inertia of a plane mass distribution. Prove tha
for any plane mass distribution the moment of inertia about the “ polar®
axis (perpendicular to the plane) equals the sum of the moments of inertia
about two mutually perpendicular ‘ equatorial ” axes (in the plane of the
mass distribution, intersecting in the polar axis). Specialize the foregoing
to a circular disk.

IV.2. Rotation of a top about its principal axes. According to Fig. 46a, b,
the rotations of an unsymmetrical top about the axes of the largest and
smallest moments of inertia are stable, that about the axis of the intermedi-
ate moment of inertia is unstable. Prove this analytically. Start out with
Euler’s equations of motion and put the angular velocity about the axis
of rotation w;=const.=w, Angular velocities w, and w,; about the other
two principal axes are initially zero, but, due to a perturbation, acquire
values different from zero. If we suppose the perturbation small, the first
Euler equation states that to a first approximation w, remains unchanged
=<wy. From the other two equations one obtains a system of two linear
differential equations of first order in w, and w,;. Put w,—aer? and wy= be
with arbitrary constants @ and b, and substitute in the two equations. The
discussion of the resulting quadratic equation for X yields the proof of the :
above assertion.

IV.3. High and low shots in a billiard game. Follow shot and d{-aw
shot. A billiard ball is hit with horizontal cue in its median plane, 1.6- -
without “ English .” At what height % above the center must the cue hit :
the ball so that pure rolling (no slipping) will ensue? Work out a theory
of balls struck high and low, taking into account the kinetic friction between
ball and cloth. By how much does the velocity of the center of mass grow
in a high shot during the total time friction is acting, and by how mt'lc_h
does it decrease in a low shot? What time elapses before only pure rolling &
remains?



v.3 Problems 251

The same method can be used to explain the phenomena taking place
on collision with another ball, i.e., follow and draw shots.

1V.4. Parabolic motion of a billiard ball. How must a ball be struck
g0 that the initial motion of its center of gravity and the axis of rotation
are not normal to eacl} other? Show that the direction of the force of
friction 18 constant as long as the ball slides. What is the trajectory of
the center of the ball? After what time does pure rolling ensue?

Chapter V

V.1. Relative motion in a plane. A plane rotates with variable angular
velocity « about its normal at one of its points O.

What forces in addition to the centrifugal force must be applied to a
mass point so that its equations of motion in the rotating plane take on
the same form as in the inertial frame of a spatially fixed plane? It will
be convenient to introduce complex variables iy in the spatially fixed
plane, é-+in in the rotating plane.

V.2. Motion of a particle on a rotating straight line. A mass point
moves without friction on a straight line which in its turn rotates with
constant angular velocity o about a fixed horizontal axis intersecting, and
perpendicular to, the straight line. Calculate the motion on the rotating
straight line as a function of time, and show that the force of constraint
(guiding force) and the component of the gravitational attraction along
this force just balance the Coriolis force.

V3. The sleigh as the simplest example of a non-holonomic system
[after C. Carathéodory, Z. angew. Math. Mech. 13, 71 (1933)]. The sleigh
is regarded as a rigid plane system with three degrees of freedom in finite
motion, one degree in infinitesimal motion. (Cf. the rolling wheel in
Problem II.1, which had five degrees of freedom in finite motion, three
in infinitesimal motion.)

Neglect the sliding friction on the snow, or, alternatively, think of it
48 permanently compensated by the pull of a horse. One must, however,
take into account the friction F exerted laterally by the snow tracks
4gainst the runners of the sleigh, for it prevents any lateral motion of these.
Let this friction be concentrated at one point of application O.

An &n-system is fixed in the sleigh. The &-axis runs horizontally along
th‘e center line of the runners and passes through the center of mass &
With coordinates ¢=a, 7=0, and the n-axis passes horizontally through
the point of application of . In the horizontal plane of the snow we fix

M xy-system. Let ¢ be the angle between the axes of £ and z, mzq.i; the
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instantaneous angular velocity of the sleigh about the vertical; 7 is ¢
mass of the sleigh, I its moment of inertia about the vertical through '
mass center; u, v are the components of the velocity of the po
(¢=7=0) along ¢ and 7.

(a) Derive the three simultaneous differential equations for the quantit;
u, v, w with ¥ as external force, using the method of complex var
of Problem V.1, )

(b) Simplify them by introducing the non-holonomic condition v and,
determine F from them. :

ing

iableg

2 K23

K-1 K3 K

Fa

Fia. 57. Trajectory of & sleigh for various values of
k, after Carathéodory.

(c) Integrate them by introducing, instead of ¢, an auxiliary ang
proportional to ¢.
(d) Verify that the kinetic energy of the sleigh is constant (because ¥’
does no work).
(e) Show that, with suitable choice of the time scale, the trajectory Oﬂ_j
point O in the xy-plane possesses a cusp at {=0 and asymptotically approaches:
straight lines for {= + w0, as shown by the curves of Fig. 57 borrowed from-
Carathéodory.

Chapter VI

VI.1. Example illusirating Hamilton’s principle. Calculate the value.
of Hamilton’s integral between the limits {=0 and {=¢,
(a) for the real motion of a falling particle, z= 1¢t%;

(b) for two fictitious motions z=ct and z= a3, where the constantsc and
must be so determined that initial and end positions coincide With.tho’
of the real path, in agreement with the rules of variation in Hamilton
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v1.3
rinciple. Show that the integral has a smaller value for the real motion (a)
fhan for the fictitious ones (b).

V1.2, Once more the relative motion in a plane and the motion on a

rolating straight line. Treat Problems V.1 and V.2 by means of the Lagrange

methOd-

V1.3. Once more the free fall on the rotating earth and Foucault’s
pendulum. Verify that these problems, too, can be treated by Lagrange’s
method without knowledge of the laws of relative motion. This procedure
;s interesting and simpler in thought than that of Chapter V; it does,
however, require a careful inspection of the numerous small terms occurring,

only after the differentiations gt C% and > have been carried out should
the usual approximations of large terrestrlal radius and small angular velo-
city be made; until then, all terms must be carried.

Start out with ordinary spherical polar coordinates r, 8, i, where r is
measured from the earth’s center. Next compare these with coordinates £,
g, { introduced in Fig. 49. Let R be the earth’s radius, 8,, ¢, the coordinates
of the projection on the earth of the initial position of the freely falling
body or of the point of suspension of the pendulum. We then have the
following relations between coordinates r, 8, ¢ and ¢, , { of the falling or

oscillating particle m,

(1) £=R(6—6,), n=Rsinf(y—,), {=r—R,
with

(2) Po=ct, fo= ;—r — ¢=colatitude.
From this

E=RH, 7=Rsinb(J— o)+ 2206, (= ¢

sin @

and, conversely,

®) ro=(1+%)é

rsinfi=(1 57+ wR(1+ §)sin0— 22014+ 5)%¢ =L,

sin #

where the angle @ occurring on the right must, according to (1), be regarded
88 a function of ¢.

These values are to be replaced in the expression

T = T (302 624 r2sin?0y?)
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for the kinetic energy, which becomes, as a result, a function of g', 7
¢, m and {. If we denote the terms later to be dropped by ..

"» We can, -
for instance, calculate from 7' :

T _ £\2g_, cos0 £\ £ Vg ]
(4) a—g._m(1+§) -mga(1+5)2{- ._§_wR(1—}—R)sm6+...}
(5) ;—Zg’gzmé—- mwcos fin - . .
(6) g—gT—=%%%z—{—mwcosﬁﬁ+---

As our potential energy we can take
(1) V=mg(r— R)=mgl.

Verify that in this manner we obtain Eqs. (30.5) for the free fall and
Eqgs. (31.2) for Foucault’s pendulum, from which follow the results developed '
earlier. -

V1.4. * Wobbling ” of a cylinder rolling on a plane support. A circular,
cylinder of radius @ has an inhomogeneous mass distribution, so that the .
center of mass G has the distance s from the axis of the cylinder. The cylinder
rolls on a horizontal plane under the influence of gravity. Let m be the
mass of the cylinder, I its moment of inertia about an axis through the
mass center parallel to its axis of symmetry. Investigate the motion with -
the help of Lagrange’s method, introducing the angle ¢ rotated through
as generalized coordinate ¢. In calculating the kinetic energy, put the
point of reference

(a) in the center of mass,

(b) in the geometrical center,
of the cylinder and verify that in both cases the same differential equation
in ¢ results. .

Show by means of the “ method of small oscillations ”’ that the equili- -
brium of the cylinder is stable with @ in the lowest, and unstable with G ...
in the highest position.

VL.5. Differential of an automobile. 1If the driven wheels of an auto-
mobile are not to slide, they must be able to turn at different speeds on &
curve. This is achieved by the differential (Fig. 58). The engine drives the
driving wheel () in which axle 4 is fixed. Two bevel gears (w) sit on 4 _
in such a way that they can rotate independently about 4. They, in turts .
are in mesh with the pair of bevel gears (w;, w,) on which they may 0
(cf. Fig. 58, left) as 4 turns.
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The axle of the rear wheels of an automobile is cut at the center (Fig. 58,
right)- Fixed to the left end of its right half is the bevel gear (w,), to the
richt end of its left half, the bevel gear (w,). The two halves of the rear

AT : 2

Fia. 58. The differential of an automobile, at the same time g

model (after Boltzmann) for the induction effect of two coupled

circuits. Left: view along rear axle of vehicle. Right : side
view of this axle.

axle are therefore coupled by the differential in such a way that they can
turn with different angular velocities.

Set up the kinematic relations between angular velocities £2, w, w, and
wy. Next make use of the principle of virtual work to derive the condition
of equilibrium between the driving torque L acting on (£) and the torques
L, and L, acting on {w,) and {w,).

What is the equation of motion of the system? Let I, and I, be the
moments ot inertia of (w,) and (w,), I that of the pair of gears (w) about
the axis of 4, I’ that of (w) about the axis of the driving wheel. Neglect
the contribution of (2) to I'.

If one rear wheel is accelerated, for instance by decreasing friction, the

other wheel is retarded, even if driving torque and frictional torque remain
equal there,




HINTS FOR SOLVING THE PROBLEMS

Almost all numerical calculations occurring in these problems can be
carried out to sufficient accuracy by means of a slide rule. Let ug call
express attention to this useful tool for quick approximate calculationg.

I.1. The proof that v,=w,=v can be derived either algebraically op
geometrically. In the latter case use », and v, as rectangular coordj tos
in a plane diagram.

I.2. The velocities of the expelled masses are, respectively,

2M

M—m
MrmYo

and T,

L.3. Here we obtain the formulas of 1.2 with a change of sign.

I.4. Verify that the quadratic equation for ¥ leads to the same minimum
value v, as that for v. ‘

I.5. The differential equation to be integrated is
my—pa= —mg.
With the independent variable m=mgy— ut instead of ¢ one obtains
- — _E N
v= aln(l mot) gt

and, by an additional integration (z=height above earth’s surface),

(1) z=%9{(1—%ot)hl(l—%t) +%ot}—%gt2.
For small ¢ we obtain, by neglecting higher terms in ¢,
@ = (o)
The numerical calculation with equation (1) yields
t= 10 30 50 sec
2=0.54 5.65 18.4 km

I.6. Sinee water has specific gravity 1, the mass of the drop 18

47
3

a factor of proportionality, dm=4mr2adt; it follows that dr=o d¢. In terms,
of r the differential equation is then

m = 4713, ie., dm=4m2dr. In condensation, on the other hand, with &

256
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d
aa. (rav)z'r:’g.
By virtue of the initial condition v=v, for r=c its solution is
r ge
v=2ita(n-23)
for ¢="0 and v,=0 we have, respectively,

_9gr, _grfy_ <y
Y= a3 Uwcu}(l r“)

1.7. Let x be the instantaneous length of chain hanging down. With
the mass of the chain per unit length put equal to 1, the equation of motion is

%(x:é):: xZ+a2=gz.

Since its integration is somewhat difficult — after the substitution z=ut it
leads to an elliptic integral — we shall be satisfied with expressing the quanti-

ties 7, V¥ and Q (Carnot energy loss per unit time) in terms of x, * and %
and showing that by the equation of motion we have

T—]—T}-}-Qz(), and hence, T—i— I};éO.

I.8. Our equation of motion is Itr=gx. This linear differential equation
with constant coefficients has a solution of the form (3.24b). The validity
of the principle of energy can be read off either in differential form from
the equation of motion, or in integrated form from its solution

r=ale®te o), o= %, a=

ro| B

1.9. The numerical data given in the problem permit the calculation
of the centripetal acceleration of the moon in mwsec~2, For the radius r

of the earth we can take the original definition of the meter, 'r=-21;107m.

The law of gravitation, on the other hand, yields fi%i as the centripetal accelera-

tion after the gravitational constant @ has been eliminated by means of

9 as on p. 20. The two numerical values thus obtained are in satisfactory
agreement.

L10. Set up the transformation equations for the coordinates as in
(2.5), but with #p= By=7o=0. The components of the transformed moment
are found to be linear expressions of the components of L with coefficients

®qual to the cofactors of the transformation scheme. For the latter we
have the relations
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— (%2 %3 — %8 %
"=lpopp P a)
to be proved from the orthogonality conditions. Here p= + 1, » according ag *
the transformed system has the same sense (* unimodular transformagiop ”) e
as the original system, or the opposite sense. |

I.11. From Eqs. (6.8) we have [according to Fig. 7 and Eq. (6.5), Bis |
negative]

—B _ |B|
—eM T oM’
< T

It follows that for the ellipse (e<1)=- M > |B|, for the hyperbola (e>1)

(_}ﬂ_l < |B|. Now R= 7M is the radius of the hodograph circle, |B| the

distance of the center from the pole. From this the assertion made in the
statement of the problem follows at once.
The table below, in which

”o—'“-gif*HBl

s

signifies the magnitude of the planet’s velocity at perihelion, shows how
the limiting cases of the circle and the parabola fit into the scheme.

Planetary Trajectory € |B| Hodograph Vg
circle =0 =0 center at pole = gél,—d
ellipse <1 <R | hodograph includes < 2GM

pole ¢
parabola =1 =R | hodograph passes _26M

through pole ¢
hyperbola >1 >R | hodograph excludes S 26M

pole o

e
L12. In the differential equations (6.4) we must replace GM by + 7

where the upper sign (attraction) corresponds to the case of the positive
ion, the lower sign (repulsion) to that of the negative ion. Note that here
z==0, y= —v,, and the meaning of ¢ is the same as in Fig. 6, so that Egs-

(6.5) give for ¢= g,

A

il
H-
|
&
[y
I
|
a‘t‘.‘
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Eq. (6.6) then becomes

1 1A .
W =1 meooz(l—smgb)—%’comﬁ.

¢ changes from trajectory to trajectory with the distance of the firing
direction from the y-axis. It follows that (1) represents a family of
curves. To obtain the envelope of this family, differentiate Eq. (1) with
respect to O, then eliminate C' from this and the original equation to obtain

4eF
mevl

2) ?=p*—2py, p=+

Note that any electron path consists of only one branch of a hyperbola,
whereas (1) represents both branches; verify — most simply by a sketch of
the corresponding families of curves —that Eq. (2) is the envelope of the
actual electron paths only in the case of repulsion.

I.13. It will be easiest to use the method of harmonic oscillations
of § 3, (4). It is, however, instructive to check that the methods of § 6
also lead to the desired end.

I.14. The nuclear reaction treated here is not an elastic collision;
nor is it an inelastic one. It is, so to speak, a ‘ superelastic ” one, in that
the nuclear binding energy ¥ is to be added to the primary energy E,,.
The kinetic energy of the a-particles can be calculated in the classical form
Eo=imqvs,

Elimination of v, from the equations of energy and momentum then
yields Kirchner’s result for the symmetrical case,

(7 _Ey \}
cO8 = (2ma E+E,,)

1 ev is that energy which a potential drop of 1 volt (=108 electromagnetic
units of potential) imparts to the electronic charge e (=1.6 - 10-2° electro-
magnetic units of charge), so that 1 ev=1.6 - 10712 erg.

 The mass of the proton is m,=1.65 - 10~% g, that of the a-particle,
18 hence m,=6.6 - 1072 g. The latter is needed in order to pass from
Ly, at first expressed in ev and then converted to erg, to the velocity v,.
The value of o thus found shows that the classical form for E, was justified
and that the relativity correction of Eq. (4.11) is negligible.

I.15. In the second Eq. (3.27) we put V=0 and, say, v,=1, so that
One can immediately calculate the kinetic energy + M V2 of the struck particle
after the collision as function of m:% ; In particular one finds it to be a

Maximum for z=1 and to be small— only 1.9 % of the maximum value —
for 2= 206.
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Proceeding from such considerations, Fermi in 1935 worked oy
method for the production of “thermal ” neutrons, i.e., slow neutrong of
uniform velocity, which by frequent collisions have reached equilibrium With
the protons of thermal energy contained in the paraffin.

I.16. The coordinates of K are
x=ML=acosu
=8L—8M=rcos¢p—ea
(1b) y=KEL=rsin ¢=>=sin u.

(la)

Write the polar equation of the ellipse in 7, ¢ in the form
(1) r=ercosd-+p, p=a(l—e3).
Substitute the value of r cos ¢ from (la) to obtain

(2) r=e(a cos u+tea)-|-a(l— €?)=a(l+e cos u).
A differentiation of (2) gives

(3) dr= — ea sin udu.

A differentiation of (1) gives

esingdg=—p%.
From this
(4) P p—p? (’-é: C (C=areal velocity constant).

esin ¢
Eq. (4) is transformed by (1b) and (3) into

ra - _
5 ru=0C,

Finally replace r from (2), to arrive at the differential equation

(5) (14-¢ cos u) du=ndt (6) n

pa

Integration of (5) yields
U— € Sin u=mnt.

The integration constant vanishes because we agreed to measure time It :
such a way that for u=0 we have ¢{=0. nf is called the mean anomaly
and, like the other anomalies, is measured from perihelion in astronomy-
The name comes from the fact that by means of Eq. (6.9) the right member

of (6) can be transformed to %—:’
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11.1. Reduce
of of of of
df = azé‘x—}— ayé‘y—}— 56 Od -+ oW Y

by means of condition (1) of the problem, to obtain for the right member

0 d . 7 2
(ai;a Ccos :,l:—{—éia sin -+ #;) O aTJ;c?yb

Now 8¢ and 8¢ can individually be put =0, so that

@ =0 and ®)  afeosptalsing+F =0,

The latter equation is valid for all 4 and can therefore be differentiated
with respect to . With the help of (2) this gives

(4) —a%sin:,b—}—a%com,b:O

and, after a second differentiation with respect to i,
2 of .

(5) o cosyta 51; sing—0.

From (4) and (5) it follows that

of _ o

According to (3) we must then also have

of
(7) o5 =0

(2), (6) and (7) show that there does not exist a condition f—0 dependent
onz, y, ¢, ¢, i.e., that our system is non-holonomic. Proof of G. Hamel,
* Elementare Mechanik,” 2nd Ed., Leipzig 1922,

IL2. Draw the work diagram of the engine, that is, the L-curve and
the W.line with the crank angle from O to = as abscissa. Note that the
areas enclosed between the L-curve and the abscissa and the W-line and
the abscissa must be equal. This yields a relation between L, and W.
The angles ¢, and ¢, belonging to wy,. and w,;, are the points of inter-

Section of the L- and W-curves in the diagram, SIN ¢b; = sin o= %, o=

T=¢1, ¢,=39° 33'=0.69 radians. Determine the difference in the kinetic
energy of the flywheel between angles ¢, and ¢, and express it in terms of
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1, o, and 8. The equation of energy written for the same interva] yields "
the magnitude of the required I in the form ‘

I:

w 0.66

With

Ww 60
N= = HP and n=—_wr.pm.

one obtains
N
I~:43,400 8;3kgm-secz

in the practical system of units.

I1.3. For the magnitude of the earth’s radius see Problem 1.9. For
the numerical calculation of the length of the day put (8=)t=5. .

I1.4. (a). If one thinks of the beam as held fixed in position, one need -
only consider the equilibrium of gravity and inertial forces at the pulley .
in a virtual rotation 8¢ of the pulley (torque equation). From this ope .
obtains the acceleration Z of the weights as a small fraction of g. .

(b). Add a virtual rotation of the beam to the foregoing. Here the/
moments of the inertial forces about the fulcrum of the balance beam '
enter. One finds that equilibrium does not prevail. The beam is deflected - . /-
downward on the side of the pan as long as the weight p is falling. In .y .
estimating the excess weight the diameter of the pulley may be neglected\‘.z_\' -
in comparison with the length of the balance beam. Another procedure -
using the same approximation is to compare the load on the pan with *
the load due to weights and inertial forces on the other side of the beam.

IL.5. Let the equation of the inclined plane be
(1) F(z,x,t)=2—~ax—¢ (t)=0.

a=tan « determines the constant inclination o of the plane to the I?OI'i‘
zontal; $(¢) is its intersection with the z-axis which varies with time.
Lagrange’s equations of the first kind (12.9a) give

(2) T=-—Aa, Z=A—g.

In order to determine A, differentiate (1) twice with respect to ¢,

(3) i—az=d (t).
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Substitution of (2) in (3) yields A; the integration of (2) can now easily
pe carried out.  With initial conditions £=2=0, x=1,, z=2, at t=0 one

obtains

z=o— 1ge $(0)— $O)— $(O)t+o %)

1 . tz
P=FTTE az(¢(t)~¢(0)— 95(0)t—ga2-§)-
From this we have for ;;.5: +g
2 ., T
T=Ty—gsin2e 2=2y+g5c082x

and for 9'{;: -4,

tB
:L':xo, 2= 20—‘ 2—’

as for a free fall. A=0 only under the last assumption; otherwise A acts
as a pressure against the sliding body and hence does work.

The problem can be solved by means of d’Alembert’s principle without
introducing A. Since the time is not to be varied (cf. p. 68), we have, from
(1), 8z=a 8z for the virtual displacements. From d’Alembert’s principle it
follows that

Z+4(g+2)a=0,

which, together with (3), allows one to calculate x and % directly. This
example illustrates that d’Alembert’s method leads to a solution more
directly and simply than do Lagrange’s equations; the latter, on the other
hand, have the advantage that the forces of constraint are quantitatively
determined.

IL.6. In § 11, (1), d’Alembert’s principle was used to derive the equation
of acceleration of a system rotating under the influence of an external torque.
We introduced a virtual rotation 8¢ about the axis of rotation, which we
shall here take as our z-axis. Only the tangential inertial forces were
relevant, since the normal ones, the centrifugal forces, did no work in the
Totation &¢.

Here we ask for the forces exerted on bearings 4 and B in a uniform
Totation, or, instead, for their reactions A and B. It is precisely the centri-
fugal forces which are relevant, whereas the tangential inertial forces drop
out in a uniform rotation. If we introduce the virtual translations 8y, 8z,
the virtual work becomes equal to the product of 8y and 8z by the sum of
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IL?
the y- and z-components of the centrifugal forces acting on the single magg - za
elements, these forces being 0
dmyw?, dmzw?:
(2)
An integration yields the inertial components ¥ and Z of the ordinary
swinging motion of the total mass m, which are to be thought of ag applied
at the center of mass.
Next we introduce virtual rotations 8¢, and 8¢, about the y- and z.axjg
respectively. The virtual work done in these is given by . 858
—8¢yfdmx,3w2 and 3¢zfdm:cyw2. o (3)
They correspond to the torques (4)
Ly=—1,,0* and L,=I, | I
To determine the bearing reactions A and B, fix the origin of coordinate it is
system zyz, say, at the bearing 4, designate by I the distance between the
two bearings and by 5 and { the coordinates of the mass center along the pul
y- and z-directions. We then obtain the two component equations mz
by
(1) Ay—I—Byz — myw?,
A, +B,= —mlw?
and the two moment equations
80 1
@) IB,=--1,, 0%
lBy=—Iz.yw2 (1)
for the determination of the four unknowns 4,, 4, and B »» Ba- No
Clearly these periodically varying reactions in the bearings are undesirable
from the engineering standpoint. To avoid them it is not only necessary that
the center of mass lic on the axis of rotation y={=0, Eq. (1), but also 50 1
that the axis of rotation be a principal axis of the mass distribution,
Ipo=1,,=0, Eq. (2); see, in this connection, Ch. IV, § 22, near Eq. (158). (2)
The fulfillment of this second condition is just as important as that of h
the first. The fulfillment of both conditions is called the * balancing " of te
the rotating body. I;? s

IL7. Let S be the tension of the string, z the portion of its length
that is unwound at any given instant. We have during (a):

v

Iw=_8r, S=m(g—7%,.
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5 and 7 are positive; because of z =rw,

. . Sre
(1) 2 =Trw= Tr ,
mg
2) S =—0;
1+7

during (b):
The rotation w retains its sense, The torque of the string tension acts
against w. z becomes negative and we have

(3) im—rw, i=—ro =+,
mg
(4) 8§ mr?
14+-7

In both cases (a) and (b) the string tension is the same, and constant in time;
it is smaller than the weight of the rotating body.

In the transition stage between (a) and (b) one perceives a very noticeable
pull in the hand which corresponds to the transition from positive momentum
mz to negative. During this interval S becomes greater than that given

by Eq. (2).
I1.8. The condition that the particle jump off is, according to (18.7),
A=0 or R =0
so that, from (18.6),
(1) my; = —T(xityy+27).
Now for every path on the sphere
xx4yy-+22=0, le., zZtyytzi=—(@2+y24+3%)=—1?
50 that, instead of (1), we can write

(2) mgz __ mv?

l l

The right side does not equal the centrifugal force along the path, since the
Path is not a geodesic in our case. In agreement with Meusnier’s theorem
of § 40 it is equal to the projection of this centrifugal force on the normal
to the spherical surface.

From the equation of energy

(3) 7)2:1;(5;__ 2g (z— z,).
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Eq. (2) can therefore be rewritten in terms of the initial values Yo, Zo:

o diff
(4) 32:230“{‘3 = 2 (29+hy), is
2
where h0=—%—? is the height of free fall corresponding to velocity V. .
or'
t
III.1. For a pendulum hanging almost vertically coordinates z and y ZET
are small quantities of the first order; z equals —! to quantities of the the
second order. For this reason the third Eq. (18.2) gives, to quantities of
the second order,
(1) A== to
and the first two Egs. (18.2) define, as in Problem 1.13, a harmonic elliptical =
motion of circular frequency _ .
2 g\t Cas
9 «m __ (9)0.
(2) T (l) at ¢
For the areal velocity constant of the elliptical motion we have __
3 =" = (§) a0, S0 o
: (1)
and for the energy constant (initial state By=¢, 8,=0) Th
¢
62
@) E=T+V=mgl(-1+5) @)
With u=7~—1 one has, from (18.11), Tts
4 2o 4 . (3)
U= =T =5)n=3 =F m—1) (1— ) .
Cor
e p o\t
M= (5~ 58) 4)
Dif
From (18.15) we then have a'i d
c dn the
5 2+ A= : |
(6) Tt ‘;6 l(lg)*fqa 7][(’?1"’?)(’7“"?2)]*
8ma
A substitution modelled after Eq. (46.11) transforms the integral of (5) qua
into the known integral ord
™ dv 7 €2 (e oyt (5)
J.OA + Beosv (A —Bz)*’ 4= i B= (16 - 4913) Wit

Thereupon (5) yields 4¢=0, which was to be proved. (6)
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IIL2. The first assertion of the problem is proved immediately by
differentiation of Eq. (19.10) for |C'| with respect to w: the second assertion
is similarly proved by differentiation of |C'|w with respect to w.

III.3. Let us designate the proportionality factors of the damping
torque and the restoring torque by 2pl and ng respectively. One then
obtains Eq. (19.9) as the equation of motion of the galvanometer, with the
difference that the right member is now a constant ¢ and « replaces « in
the notation. Fit the constants @ and b of the general solution

a=C+e P (acos [(wh— pz)ét]—}—b sin [{w?— pz)’}t]

to the conditions «=a=0 at {=0, and the constant C to the condition
x> 88 ! — 0.

In the case (a) one obtains a transient motion with decreasing oscillations,
in the case (c), a monotonic transient motion towards the final position.
Case (b) should be treated aslimiting case of either (a) or (¢); in it we arrive
at a secular term containing ¢ as a factor.

IIL.4. In part (a) of the problem d’Alembert’s principle (x, 4= coordinates
of the oscillating mass point, y positive upward) demands

1) % 82+ (4+9)8y=0.

The equation of constraint is

@) (&~ £)2+y? =1

Its variation (¢, and hence also ¢, being held fixed) gives
(3) (2~ £)5a+y Sy=0.
Combination of (1) and (3) results in

(4) y2—(x—£) (y+9)=0.

Differentiating (2) twice with respect to ¢ yields a second equation for z
and y which, together with (4), furnishes the exact differential equation of
the problem.

When passing to small vibrations, one must remember that z— £is a il
small quantity of first order so that, according to (2), y=—1 to small . J'
qQuantities of second order. y and y are then also small quantities of second A,
order, so that (4) becomes

(5) Ii4(x— £) g=0.

With z— £=u one obtains the inhomogeneous pendulum equation |

(6) ;d—}-?u: — é', | ‘ :
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showing that —mé acts as driving force. The integration is performeq as
onp. 101. The phase relation between the motion of the point of suspension
and that of the mass point emphasized in the text of the problem COITes.
ponds to Fig. 31. It will be instructive to make an experiment with g
string whose lower end carries a weight, and whose upper end i8 moved
horizontally to and fro by the hand. For fast motion of the hand (case
above resonance) the out-of-phase motion of the two points can be very
clearly observed.

Using the method of Lagrange’s equations of the first kind, from

Lagrange’s equation for y one finds A= _lg up to small quantities of

second order, and from the z-equation one obtains Eq. (5).
In part (b) of the problem Eq. (1) remains valid. Condition (2) becomes

(7) 224 (y— ) =12,
Its variation yields, instead of (4),

(8) (y—n)Z— x(y+g)=0.

If z is treated as a small quantity of first order, (7) gives to quantities of
second order

(9) y—’7='l, ?/27?-

By this, (8) becomes
(10) i1 50

The same follows from Lagrange’s equations of the first kind, since the
y-equation yields the value

(11) A= 117
if approximation (9) is used, so that the z-equation becomes identical to
(10).

If the point of suspension is moved upward with constant acceleration
¢ it follows that the force of gravity seems doubled; if the point is moved
downward with —g, it seems to be anulled. This points to an equivalence
between gravity and acceleration, which, together with the equality of the
gravitational and inertial mass (p. 19), formed the foundation of Einstein’s
theory of gravitation,
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II1.5. Equilibrium of the tensions at points C and D (necessary because
the wire is weightless !} demands that

Ty—Xy T Ty—& Ty—&Ty o Ly
(3) 8,77 =87 +87, 8P =87 8,

so that, from Eq. (1) of the problem, with o;= TS}E ;1 , U= 5,
1 S 1
(4) 012 = (24 01)T3— %,
Ta 2y = (2+F 09)2y— X3,
We have presupposed weak coupling, so that o, and o, are small numbers;
they can be cancelled in the right members of (4). Solving for z,, x, then

yields

1
(5) c71::51_*d 50'2.’152

I3:

Wby Wl

1

and substitution in (2) gives

. g 1
Eyt] (L= o) 2= ? (0424 — )

(6)

3
A lg

These simultaneous differential equations are to be treated just like (20.10
The meaning, for our problem, of the quantities wy, ws,, by, ko introduce
there can be found by comparison with Eq. (6) above.

I11.6. The effect of m on M is represented by k(X —x), that of M
m by k{x— X). In the two resulting simultaneous differential equations f
X and z put X=0. It will be found that the condition required — that on
m take part in the oscillation —is given by the resonance requirement th
the circular frequency of the proper oscillation of system (m, k) be equ
to the circular frequency w of the external force.

Such an arrangement is used in engineering practice as an “ oscillati
quencher.” It may thus be used on a crank shaft with a flywheel rotati
with constant angular velocity w; there the quencher is a device capak
of variable rotation; its purpose is to absorb the oscillations of the crai
with which it is coupled. In such a case the angle rotated through tak
the place of coordinate x of our problem.

IV.l. Moments of inertia of plane mass distributions are importa
for the torsion and bending of beams in elasticity theory (Vol. ITI). Becal
of r2=22%{ 4% we have

I,= J.r2dm= fx%lm—%— fyzdm=1x+1y.
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In problems of elasticity the mass is to be thought of as uniformly digty;.
buted with density 1 over the cross section of the beam, so that dm=dS—

element of area. For a circular disk of radius @ and area S=7a? one then
obtains

Ip=frzdS=2wfar3dr=%Sa2 and hence, I =1, =18q2

]

IV.2. We leave the ratio of the magnitudes of the three principal
moments of inertia arbitrary to the very last; we thus embrace, in one and
the same calculation, the three cases in which A4 is the greatest, smallest,
and intermediate principal moment of inertia.

IV.3. The impulse Z imparts to the ball (radius a) both a translational
and a rotational momentum,

(1) Mv=2 and (2) Iw=Zh,

where % is the height above the center at which the horizontally held cue
strikes the ball. The axis of w is perpendicular to the median plane. The
peripheral velocity u at the lowest point lies in the median plane and equals
aw. This is true not only at £==0 (time of the impact), but also for ¢> 0.

According to (11.12a), Izg Ma?, so that, for £=0, by Egs. (2) and (1),
(3) 2 Mau=Zh—Mvh.

v=wu means pure rolling, and from (3) requires A= %a. Notice that we
have counted w positive in the direction opposite to ». For high shots
h>§a the sliding velocity u—v of the point of contact between ball and

cloth is >0 and opposed to v; friction is therefore directed along » and of

magnitude uMg. Its moment about the center, pMga, acts against the
rotation w.

For low shots the friction is directed in the opposite way. In general,

we can associate the upper sign with a high shot, the lower sign with a low
shot, and write for ¢> 0,

(4) v=-tpug,

(5) ?:&=:Fg,u,g.

Discussion by means of graph: draw v and » as ordinates aga:inSt ¢
as abscissa; both are represented by straight lines which intersect in 1‘;he
case of high shots as well as that of low shots. At the point of intersection .
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u=v pure rolling takes place. From then on the graphs of u and » run on
in coincidence along a horizontal straight line. The abscissa of the inter-
section is

5h—2a Z
(6) TS el

Note that for a low shot the first numerator is negative since 4 lies between
—a and ga ; the negative sign of the right member of (6) is therefore only

a formal one. The increase or decrease of velocity for high and low shots
respectively 1s given by dv=-4pugr. The final velocity of pure rolling
becomes

h+a
a

SIS

v+dv=

-1l

i.e., proportional to the height A+a of the point of impact above the cloth.

Theory of the follow shot. The ball struck high meets a second ball in
a central collision during the time interval {<+ in which u>wv. Let %,
and v, be the values of « and » at the moment of impact. v, is transferred
to the second ball. According to (4), the first ball is then accelerated from
v=0. From (5), its v decreases from u, on down. A new graph shows
that there is an intersection at which pure rolling begins to take place.
Abscissa of the point of intersection and velocity of pure rolling are,
respectively,

(7) 1= g !%’ 1=pg7T = %uo-

Theory of the draw shot. Again the driven ball meets a second one in
the interval ¢ < r, where now, however, . <v. For an extremely low shot,
which we shall presuppose, u is, as a matter of fact, negative, that is, has
the same direction as v. Let %, and v, be the values of % and v just before
impact. v, is again transmitted to the second ball. From (4), the first
ball is accelerated from »—0 in the negative sense: it runs backward.
Eq. (5) tells us that w increases from its negative initial value %, toward
positive values, i.e., its absolute value decreases. The two straight lines
of v and u intersect (new diagram); the abscissa of the point of intersection
and the final velocity of pure rolling now become !

|

(8)

2 |u 2
ra= Tl Iral= 7 ol

IV.4. The cue is no longer held horizontally as in IV.3, but forms
an angle with the horizontal plane; evidently the cue must hit the ball
at a point of the upper hemisphere, as in our earlier “ high shots.” Put
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the z-axis along the horizontal component of the impulse and the z.axig
along the vertical. The components of the impulse Z become (Zg 0, Z,)
and the components of the impulsive torque N referred to the center of the
ball (which is also the origin of the xyz-system),

N, =yZ, N,=2Z,-2Z, N,=—yZ,

Here z, y and z are the coordinates of the point of impact of cue and ball.
From the N, N, we obtain the angular velocities

5 Ng 5 Ny

Y2=3 Ma?’ “v72 Mad
The associated peripheral velocities at the lowest point P of the ball are

(1) U . ——aw

z p Uy=Taow,.

N, and w, do not interest us; they do not generate any sliding at P, but
merely a ““ boring ” friction to be neglected. Let the sliding motion at
the cloth have components

(2) Vy,— U, = — pCosa, Yy, U,= — pSIn «.

It creates a friction R making an angle =+« with the z-axis and having
magnitude pg M. Its influence on the translation and rotation for ¢ >0 is
determined by

My, ~=R_, Mv,~R,,
I, =aR , lo,=—aR,.
It follows that
V= —ugcosa, vy,= —pgsin«
and, by virtue of (1) and (2),
(4) fdy:—g-pgsina, dxz-gpgcosoc;
VU= —%(p COS &) = — %pgcos «,

(5)
- . d . 7 .
vy~ U, =——(psina)=--zugsina.

Solation for & and p from the last two members of Egs. (5) gives

1. a=0. The friction has constant direction; since it also has constand
magnitude, the path of point P in the horizontal plane becomes a parabola.

t

st
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The axis of the parabola is parallel to the initial direction o of the sliding
motion, which can be gathered from the components of Z and N.

2. p= “;MQ, p:po—%,u.gt, p=0 for t:ng ’%. po 18 the initial magni-
tude of sliding velocity which can likewise be determined from Z and N.
For ¢> 7 the sliding and friction are permanently 0. The ball pursues a

straight course tangent to the parabola.

V.1. Let ¢ be the instantaneous angle by which the rotating plane
has turned with respect to the fixed plane. We put

(1) x—+iy=(£+in)e'd.

Two differentiations with respect to t give, with qS = w,

() &+ i ={£ + 5 + 2ico(€ + 35) + ico(€ +in) — W€ +-in)} b,
§-+m is the (complex) vector r as observed from the rotating plane,
£+ =T its velocity observed from the same plane, ete. Since i(£ + in)=

SR ¢ . .
(&4 o) ¢*z is a vector perpendicular to the latter, we can write,

(3) 2iw(f+i7)=20XF, io(f+in=6XT,

where o is of course directed along the normal to the complex plane, As
on p. 165, let us call w the velocity = -+ iy, as observed from the fixed plane;
we shall, however, retain the designation of superscript dots for the time
derivatives referred to the rotating plane, as written in Eq. (3) above.
Eq. (2) then transforms to the following equation analogous to (29.4):

(4) W = {r+20Xt+oXr- w’r} e'd,

If F=F_ +1iF, is the force referred to the fixed plane, ©-==F¢+1F, that
referred to the rotating one, we have, from (1), F= ®e’¢, so that

(5) @ ==Fe 19,
In the light of (4) and (5) we then have from mw=F that
(6) m{i‘+2wxi‘+d)xr—cu2r} = P,

With this we have determined the additional forces required in the problem.
In particular, one identifies the second term on the left with the Coriolis
force.

We have intentionally treated this problem in complex notation in
order to emphasize that two-dimensional vectors are best represented by
complex variables.
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V.2. Let us choose the plane in which the straight line rotates ag the
zy-plane; =z-axis horizontal, y-axis vertically upward. Let ¢=ewit be the
angle of the straight line with the 2-axis. One can reduce the problem tq
the foregoing one by associating with the rotating straight line a vertica]
§n-plane in which the line is fixed. This £x-plane must then rotate in the
zy-plane with constant angular velocity w. It is convenient to put the
¢-axis along the rotating straight line. In order to keep the mass point
on the {-axis one must exert on it a force of constraint in the 7-direction.
Our external force ® is therefore the sum of the force of constraint, which
we shall call mb, and the force of gravity mg. From Eq. (5) of the foregoing

problem the contribution of the latter to ® is —imge~?$. Summing, we
then have

O=0P; 4 i@y = —mgsinwt—imgeos wi-+imb.
In Eq. (6) of the previous problem one can put r=¢ and, by virtue of (3)

ibid., 20 Xr=27w§; further one must put &=0. One obtains
(1) £+ 2iwé~w é=—mgsinwt | i(b—gcos wi).
Its real part gives

(2) - w?é=—gsinot,

a differential equation with solution

(3) r=A cosh wt 4 Bsinh wt + ;75 sin wt,

If one puts the imaginary part of (1) equal to zero, one obtains the relation
between force of constraint, gravity and Coriolis force given in the problem,
viz.,

4) b:gcos.wt—{—.?cué.

V.3. (a) Let x,+ ¢y, determine the position of O in the zy-plane. We
then have

Ty + 1Yo= (u -+ {v) eiP
Zo+ tYo={U 4 10+ fw (u -+ iv)} ¥
Let z -}- 1y determine the position of @ in the xy-plane. We have

(1)

x+ty=xy+ 1y, + ae'®
z+iy—=(u-+iv+iwa)ed
(2) iy =0+ +iva+io U+ w) — owla] e

(1)
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In the zy-plane there corresponds to the external force R the complex
quantity
(2) F = Ried,
From (2) and (2) the Second Law, & + i — 77 leads to
i+ 10+ iba-Fin(u+iv)— wla=il

or, resolved into components,
(3) u— wv- wla=0,

. . R
(4) v+ wa+ WU 7.
In addition we have, from the law of angular momentum,
(5) Iw= - Ra.

(b) Conditions v=90, v=0 simplify (3) and (4) to

S

(3) u— wta=0, 4) wd+ o=
Elimination of R from (4') and {5) gives
. I

(6) wa(1+m)+wu=0.
Now put I=Mb? (b=radius of gyration) and

b?
(1) =14 2> 1,
which transforms (6) into
(69 k2wa+ wu=0.

After integration of the simultaneous Egs. (3') and (6) R is determined by
(4) or (5).

(¢) Elimination of % from (3') and (6"} yields

d o
(8) kzgz B:—wa.

After multiplication by % this equation becomes integrable and furnishes
9) & (:_;’)2_—.1;%2— w?, (9)  ko=owkic— )t

where ¢ is & constant of integration. One gets rid of the square root by
putting

(10) w=rkccos .
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With suitable choice of the sign of the square root, (9') becomes

(10) f=ccos
or
_dy _ I+siny
cdt_cosvf , (11) ct—élnl—:'m .

We have thus determined i as a function of . We can now expresg all
quantities in terms of ¢; w from (10), » and R from (6') and (4'):

. , M .
(12) u=ak?csin i, (129 B ="5ak(k®—1)c*sin2y,
This completes the integration.

Because of w=q§, comparison of (10) and (10’) finally yields the relation

a,l;: % Our auxiliary angle ¢ is hence proportional to the angle of roﬁation @, -

(13) =1,
since the constant of integration can be made zero by suitable choice of -
the arbitrary direction of the z-axis, p

(d) From (1’), for v=0,
|z§:+ig}[2=:§:2+?}2=uz+w2a2,
T =3 (@4 §7) ="y Ui+ 0?a?)+ (k— 1)att
(14)
= %‘r(uz—i— k2alw?).

From (10) and (12) this equals
(15) T— 1—'24a2k402(sin25b—}— cos?y)=Const.
(e) From (1) and (12)
ro=ak?csinfcosd, ¥,—akcsinsing,
8o that, by virtue of (10’) and (13},

(16) =aktan Y cos, Wo_ gl tan Yy 8in .

d2o
d¢ ¢
Eq. (11) tells us that

for =0, t=0

for y= + 3, t= % 0.
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The whole trajectory takes place between — % << +_’2’ , — kg <d<+ kg.
At t=0 a cusp occurs; for, according to (16) with $=0, ¢=0,

dzy _dy,__d*%e__q. d? d3
Ja"—%"—g&“—O, on the other hand, cﬁf’;" and &é’a'-’;éo;

the cusp has tangents parallel to the z-axis on both of its branches.
i For t— 4o the path becomes asymptotic, for ¢ becomes stationary:
| from (16), quite generally,
dxg_ dyo J-o00

. @ 4
. In addition (16) yields
o
d%o:taun¢= :l:tankg,
13 . . . .
' g0 that the asymptotes are situated symmetrically with respect to the x-axis,
- with angles + kg as shown by Fig. 57 of p. 252 for k=1, %, 2, 3.
VI.1. With z taken positive in the sense of fall, i.e. downward,
f V— —mgz Initial position z2=0 for t=0 lies above the final position z=2,

at £—=1,.
(a) For z=3gt* we obtain

[
det = f ' [%1' (gt)2+mg'g§t2] dt = %mg%?.
0

(b) For z=ct we must choose ¢ in such a way that for t={,

e ;
=24 —; . we therefore have ¢= gi‘-

With this value we find
brm gt\2 gty 3 3
[ [*[5 () +moye]a—gmad

Yor z=at3, a:%-‘t—, on the other hand,
1

det: f: [’12"(%91)2 "+ mgz%lﬁ] di= - mgt:.

_ Whereas in Hamilton’s principle we compare paths differing only by
infinitesimal amounts, here the trajectories of (b) in the phase space of the
¢. ¢ (here z,2) differ by finite amounts from the real motion (a). Neverthe-
less even now the value of Hamilton’s integral is smaller for (a) than for (b),
as
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velocity about a parallel axis through the mass center. Putting I=mp
(b=radius of gyration) and c*-=a?+-5*4-b? we have

(1) L= at T~ V= %’(cz— 2a8c08p)p2—myg(a— scos )
1oL e 1 2assingd?
v 150 (c*—2ascosd)d+ 2assing
%%=assin¢$2—gssin¢.

Hence the equation of motion is

(2) (0242ascos¢)g'£;—[—assin¢q§2+gssin¢=0.
(b) If we choose the center of the cross section through the mass center

as reference point O, the latter moves horizontally with velocity a¢; with
I'=I+mé? [of. (16.8)] we have

r

Ttranslz%%azészj Tmtzg $2, V as above,
but now 7', is not 0; from Eq. (22.11) it is given by

T,.= mmagzzscosq&

As a result
m -5

(3) L"_"‘Ttransl + Trob + Tm -V= a (cz_ 2GSCOS¢) 562'_ mg(a_3003¢)!

which is in agreement with (1), so that we obtain, once more, the equation
of motion (2). For small oscillations about $=0 it yields

q;!;—l—%tﬁzo, llzchmsz (a—sf40 . stability;
1

g s

for small oscillations about ¢=r, on the other hand, with S=n+¢,

i-99=0, =28 (e bPHY  instability.

L) 8

VI.5. 1. Relations between the angular velocities. The derivation Qf
these relations is simplest if one remembers that at the points at which th
bevel gears (w) are in mesh with gear (w;) on the one hand and gear (o)
on the other, the peripheral velocities must, at any instant, be equal.

(w) Totate about axle A4 with angular velocity w; in addition, this axle
rotates together with (w) about the common geometric axis of () \
and (w,) with angular velocity 2. If 7, r, and r, are the mean radii of P
gears (w), (wy), (w,y), we must have ab point of contact (@, w;) '

rotr,Q=rw,

VL5

and

Wit

Of ¢

o~

equs

This

(2)

It 1
amo
angi

e

use .

We
abbr
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and at point of contact (w, w,)
—rw+r,82=1,w,.
With r,=r, we obtain from this the relations

20="w;— wy).

Of course these relations can also be derived by introducing virtnal rotations.

2. Relations between the torques. The virtual work of L must always
equal the sum of the virtual work of L; and L,, i.e.,

L28t=L, w8t + L, w, 8.

We now replace £2 in terms of w; and w, by means of (1) to arrive at
L L
(2—- Ll) o+ (5 —L2) wy=0.

This is possible for arbitrary w;, w, only if

It is seen that the driving torque of the engine is transferred in equal
amounts to each rear wheel at all times, no matter what the values of
angular velocities w, and w,.

3. Equation of motion of the system. Here it will be found simplest to
use Lagrange’s equations of the second kind. We have

T=%( o2+ wl+ T2+ T ).

We replace w and Q by their expressions in terms of w; and w, and introduce
abbreviations

Ly—L+E 41,
Lyy=I,+5 +1%,
L12 = Ly = 1,—{’ - {;;Z .
Lagrange’s equations then become
dt(Ln wy - Lyg wo) =5 — Wy,

(3)

L
gt(Lzl w; - Lgy wp) = g W,
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W, and W, are two resisting torques acting at the two rear wheels; they
have their origin in the static friction at the ground and may, if one Wishes,
include the other resistances (air, ete.).

If L, W, and W, are given as functions of the time, one can calculate
the parentheses in the left members of (3) as time integrals of the right
members, so that w, and w, become known functions of the time.

Averaged over the time, the right members of (3) are equal to Zero
80 that w; and w, are constant. If, however, the resistance acting on Om;
wheel is decreased, which happens, for instance, if the wheel jumps off 3
bump in the road and momentarily turns in the air (W=0), this whee]
is accelerated, whereas the other is decelerated.

4. Analogy to electrodynamics. Egs. (3) are so written that they remind
one of the interaction of two inductively coupled currents (see the remarks
on p. 225 concerning Boltzmann). If we identify the L;; with the coefficients
of induction of the two circuits, w; and w, with the currents flowing in
them, the left members of (3) are the electrodynamic induction effects.
4L corresponds to the  impressed EMF * acting in the circuits, and

Tz%Lllw:+L12wlw2+% Ly} ,
is the total magnetic field energy. According to p. 197, one calls cyclic
systems those whose Lagrangian contains only the derivatives of the

coordinates with respect to time (here w1=g£;1, w2=q§2). They therefore
constitute the mechanical analogue of stationary electric currents. Both
the differential mechanism and the symmetrical top are doubly cyclic
systems.
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Index

A
Acceleration, moment of, 35
normal, 33, 36
resolution along Cartesian
coordinates, 32
tangential, 33, 36
Action, 181
integral, 185, 205, 230, 238
principle of least, 204, 230
quantum of, 181, 229, 238
Alr resistance, 21
d’Alembert, 53, 60
d’Alembert’s principle, 59, 61
Angular acceleration, 62, 142
velocity, 62, 120, 130
Angular momentum, definition of, 35
conservation of, 73, 79, 114
law of, 71
law of, for a rigid body, 133
of a system of particles, 71
relation to moment of inertia, 63, 131
Anomaly, eccentric, 244
mean, 260
true, 39, 243
Anschiitz-Kaempfe, H., gyrocompass, 155
Aphelion, 42
Archimedes, i, 54
Areal velocity, 36, 39, 72
Atwood’s machine, 246

B
Baer law of river displacements, 164
Balmer series, 239
Beats, 108, 114
Bernoulli, Jacques, 53
Jean, 53
Bicyecle, 55
gyroscopic effects, 157
Billiards, theory of game, 158
high and low shots, 158, 250
parabolic motion of ball, 160, 251
Block and tackle, 56
Body, rigid, 118, 133
Boltzmann, L., doubly eyclic systems, 225
momentoids, 228
Brachistochrone, 95
Bridge, forces of support, 55
Buys-Ballot, law of, 164

Canonical, 220

equations, 222

variables, 222
Canonically conjugate, 222
Carathéodory, C., 174, 251
Cardan’s suspension, 150
Carnot energy loss, 28, 29, 241
Centrifugal force, 59, 82, 163

for increased rotation of the earth, 246
Chain, falling, 241
Chandler’s period, 144
Circular frequency, 23, 87, 116
Cogredient, 14, 202
Collision, see Impact
Conservation of angular momentum, 73,

79, 114

of energy, 18, 31, 168, 189

of momentum, 4, 79
Constraint, 48, 96

prineiple of least, 210
Contact transformations, 220
Contragredient, 202
Contravariant, 202
Coriolis force, 59, 162
Corpuscular theory of light, 229
Coulomb, Ch. A., laws of friction, 81
Couple, 128
Coupled pendulums, 106, 248
Coupling coefficient, 107
Covariant, 14, 202
Curvature, 213

of a trajectory, 33, 213

principle of least, 212
Cyclic coordinates (variables), 197, 236
Cycloid, parametric equations, 94, 192
Cycloidal pendulum, 94, 192

D
Damping, aperiodic (critical), 104
factor, 104
Decrement, logarithmie, 104
Differential of automobile, 254
Differential, perfect (exact), 46
Displacement, virtual, 50
Dissipation of energy, 168
Dissipative systems, 47, 168
Double pendulum, 111, 195
Drive mechanism of a piston engine, 49,
51, 67
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Dynamics of a free particle, 38
of a rigid body, 133
Dymne, 8
E
Ecliptic, 39
Einstein, A., general theory of relativity,
15, 209
Electron trajectory in the field of an ion,
242
Electron, variable mass, 30
Electron-volt, 243
Elliptical trajectory, for a central force
proportional to the distance, 242
in a Kepler type problem, 41, 179, 237,
242
Ellipticity, 143
Enérgy, 17, 18
conservation of, 18, 31, 168, 189, 222
equation (law) of, 17, 68, 222
equation of, in relativity, 31
free, 185
mertia of, 31
kinetie, 17, 122
kinetic, for the rotation of a rigid body,
63, 122
kinetie, in relativity, 31
potential, 17, 45
potential, of harmonic binding, 23
* English 7, in billiards, 160
Equations of constraint, 50, 66
rheonomous and scleronomous, 191
time-dependent, 68
Equations of motion, various methods of
integration, 16
Equipollence of forces in the statics of
rigid bodies, 126
Erg, 8
Euler’s circle, 143
equations, 187
equations of motion, 139, 226
period, 143
theorem, 190
theory of polar fluctuations, 142
Eulerian angles, 196, 225
Evolute of a cycloid, 96

F
Fall, free, from a great distance, 20
free, in air, 21
free, near the earth, 19
free, on rotating earth, 167, 253

Fermat’s principle of least time, 207
Fermi, E., thermal neutrons, 260
Flattening of the earth, 143
Flywheel, calculation of, 245

Force, 4
applied, 53
couple, 128

derivable from a potential, 46

external, 70, 74

fictitious, 59, 162, 192

field, 17, 45

generalized components of, 188, 192

Hertz’s ideas on, 5

internal, 70, 74

Kirchhoff’s ideas on, 5

lost, 61, 211

moment of, see torque

of reaction, 52

parallelogram of, 6

polygon, 125

principle of superposition, 6

units of, 7, 8
Foucault’s gyrocompass, 154

pendulum, 171, 253
Four-vector, 14
Frahm stabilization tank, 154
Freedom, degrees of, 48, 50

of non-holonomic systems, 50

of rigid bodies, 48, 118
Frequency of oscillation, 23, 87, 102
Friction, 54, 66, 81

angle of, 82

coefficient of, 81, 83

cone of, 81

kinetic or sliding, 54, 83, 1568

Coulomb's laws of, 81

on an inclined plane, 82

static, 54, 81, 84

G
Galilean transformation, 11
Galileo, law of inertia, 3, 10
principle of virtual work, 53
Galvanometer, 247
Gauss, K. F., 8, 210, 215
Gauss’ principle of least constraint, 210
Geodesics, 208, 214
Gibbs, J. W., notation for vector products,
38
Grassmann, H.,
products, 38

notation for vector
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Gravitation, Newton's law of, 20, 39
Einstein’s theory of, 16

Gravitational constant, 20, 39

Gravity, acceleration due to, measured

with a reversible pendulum, 92

center of, 91

Gyrocompass, 154

Gyroscope, 150

Gyroscopic terms, 169

Gyrostabilizer 153

H
Hamel, G., 228, 261
Hamilton, W. R., algebra of quarternions,
120
hodograph, 34
Hamiltonian, 190, 217
Hamilton-Jacobi equation, 229
Hamilton’s equations, 217-219
Hamilton’s principle, 181, 232, 252
illustration, 252
Hamilton’s theory, 217
Heaviside, O., notation for vector pro-
ducts, 38
Helical spring, oscillating, 110
Hertz, H., centrifugal force, 60
concept of force, 5
holonomic and non-holonomic
ditions, 50, 185
principle of least curvature, 212
Hesse’s case of the unsymmetrical heavy
top, 138
Hodograph, 34
of planetary motion, 40, 242
Holonomic conditions, 50, 66
Huygens, C., center of oscillation of a
pendulum, 91
cycloidal pendulum, 94
Hydrogen atom, 238
Hypersurface 221

con-

1
Impact, elastic, 24, 25, 240
inelastic, 27
inelastic, between an electron and an
atom, 240
in game of billiards, 159
Impulse, 159
Inertia, 3
of energy, 31
Galileo’s law of, 3, 10

Inertia (contd.)
moment of, see moment of inertia
products of, 123, 246
Inertial forces, 59, 60, 76
systems, 10
Integral variational principles of mecha-
nics, 181
Intrinsic coordinates, 32, 36
Invariant, 14, 13, 16, 216, 219
Inversion (reflection through origin) of
coordinate gystems, 121
Isochronous pendulum, 88, 94

J
Jacobi’'s rule, 233
Joule, unit, 8

K
Kelvin, Lord, 169
Kepler’s equation, 238, 243
laws, 39-43, 235
problem, 38-45, 71, 235
Kinematics in a plane, 32
in space, 36
of a rigid body, 118
Kinetic energy, see energy
Kirchhoff, G., concept of force, 5
Kirchner, F., nuclear disintegration of '
lithium, 242
Kowalewski's case of the unsymmetrical
heavy top, 138

L .
Lagrange, J. L., Mécanique analytique,
i,53
Lagrange’s case of the three-body problem,
174

equations of the first kind, 66
equations of the second kind, 185
fictitious forces, 192
indeterminate multipliers, 67
Lagrangian (function), 184, 209
difficulty in defining it for general,
especially mnon-mechanical systems,
209
Legendre’s standard form for elliptic
integrals, 89
transformation 226
Lever, 54
inverse of, 55
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Light, corpuscular theory, 229

mdependence of velocity of the refer-
ence frame, 11

wave theory, 229

Linear momentum, see momentum

Line element, 213

Line of nodes, 136, 196
advance of, 145

Liouville’s theorem, 26

Lorentz, H. A., deformable electron, 15
transformation, 12

M
Mags, 4
center, 25, 70
center, velocity of, 25, 70
gravitational, 19
inertial, 19
longitudinal, 30
reduced, 28, 64, 85
relativisitc variation, 15, 30
rest, 15
transverse, 30
units, 7, 8
variable, 28
Maupertuis, P. L. N, de, principle of least
action, 204
Mechanical system, 53
Michelson-Morley experiment, 15
Minkowski, H., proper time, 14, 209
Modulus of periodicity of an action
integral, 238
Moment of acceleration, 35
of a vector, 34
of force, see torque
of momentum, see angular momentum
of velocity, 35
Momental ellipsoid, 124, 132
Moment of inertia, 62, 123
law of parallel axes, 93
of a compound pendulum, 91
of a plane mass distribution, 250
of a rigid body, 123
of a sphere, 65
principal, 124
Momentum, 4
conservation of, 4, 79
equation of, 4, 70, 133
equation of, for a rigid body, 133
in a collision of two masses, 25
in relativity theory, 14

Momentum (contd.) A
moment of, or angular, see angulay
momentum
of a rigid body, 130

| Moon, aceeleration due to earth’s attrac.

tion, 241
nodes, 146
rocket to, 241
Multiplication of vectors, scalar, 7
vectorial, 34

N
Newton, 8ir, I., Philosophiae Naturalig
Principia Mathematica, i, 3
unit of force, 9
Newton’s absolute time, 9, 11
axioms, 3
first law, 3
fourth law, 6
law of acceleration, 4
law of gravitation, 16, 20, 39
pail experiment, 9, 20
second law, 4
third law, 6
Non-holonomic conditions, 50, 244 s
velocities, 141, 197, 226
Normal modes of oscillation, 107
Normal to & surface, 215
North Pole, celestial, 143
geometric, 143
Nuclear disintegration of lithium, 242
Nutations, 146, 200

O

Oscillations, 87

aperiodic, 104

center of, 91

forced, damped, 104

forced, damped, resonance peak, 105,

247

forced, undamped, 100

free, damped, 103

free, undamped, 22

frequency of, 23, 87

harmonic, 22, 87

isochronous, 88, 94

modulated, 106, 114

of a balance wheel, 115

period of, 23, 87, 90, 95

quencher of, 250

sympathetic, 106, 248
Osculating plane, 36, 214
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P
Parallelogram of forces, 6
Path, curvature of, 33
prescribed, 65
principle of the shortest, 208
variation of, 182, 205
Pendulum, compound, 49, 91
coupled, 106, 248
cycloidal, 94, 192
double, 111, 195
forced motion of the point of suspension,
248
Foucault’s, 171
isochronous, 88, 94
reversible, 92
seconds, 88
simple, 49, 87
spherical, 49, 96, 193
spherical, for infinitesimal deflections,
247
Perihelion, 42
Periodicity, modulus of, 238
Phase difference of oscillations, 101, 105
Phase space, 238
Piston engine, drive mechanism of, 49,
51, 87
double-acting, 245
Pitot tube, 20
Planck’s elementary quantum of acticn,
181, 229, 238
Plane, inclined, 64
inclined, vertically accelerated, 246
inclined, with friction, 81
invariable, 73, 136
osculating, 36, 214
rotating, 174, 251
Planetary motion, 38, 235
Poggendorff’s experiment, 246
Poinsot method, 132
Point transformation, 201, 219
Polar coordinates, 39
Polar fluctuations, 142, 167
Polhode, (body cone), 143
Position coordinates, generalized, 185, 201
Potential, 45
energy, see energy
kinetic, 185
Power, 7
Precession of a spherical pendulum, 99
of the equinoxes, 145
pseudoregular, 137, 146, 200

Precession of a spherical pendulum (contd.)
regular, 134, 142, 200
under no forces, 145
Principal axes, transformation to, 124
Principal moments of inertia, 124
Principal normal, 36 214
Principle, d’Alembert’s, 59, 61
Hamilton’s, 181, 232
of least action, 204, 230
of least constraint, 210
of least curvature, 212
of least time, 207
of Maupertuis, 204, 230
of the shortest path, 208
of virtual work, 51
Products of inertia, 123, 246
Proper time, 14, 209

Q

Quantum numbers, 238
theory, (old), 238
Quaternion algebra, 120

R
Radius of gyration, 91
Reaction, principle of action and, 6
application to collisions of particles, 24
Reduction of a system of forces, 126
Reference frame or system, 9, 10
Reference point, change of, in the theory
of a rigid body, 127
Reflection of coordinate system, 121
Relative motion, differential equations,
165
in a plane, 251, 253
Relativity pinciple, in classical mecha-
nics, 11
of electrodynamics, 14
Relativity theory, general, 15, 209
principle of energy, 31
special, 5, 14, 79, 209
Resonance, 76, 102, 107, 116
denominator, 102
peaks in forced damped oscillations,
105, 247
Rest mass, 15
Reversible pendulum, 92,
Rheonomous conditions of constraint, 191
Rigid body, 62, 118, 133
Rolling wheel, 244
Ropes, falling, 241

287



Index

Rotating straight line, 251, 253
Rotation, about a fixed axis, 62
addition of, 120
basic equation of, 63
infinitesimal, 119
of a rigid body, 118
of a rigid body about a fixed axis, 62,
118
permanent, of an unsymmetrical top,
146, 250
virtual, 58, 71
Rotational couple, 128
velocity, 119
Routh, K. J., Treatise, 150, 223
Routh’s equations, 222
funection, 223

S
Scalar product, 7
Schlick, O., mass balancing, 76
gyrostabilizer, 153
Schrodinger, E., 229
Schuler’s law, 156
Scleronomous conditions of constraint, 191
Screw displacement, 119, 129
Secular equation, 109
Separation of variables, 231, 235
Sleigh, as an example of a non-holonomic
system, 251
Sliding friction, 54
Spin, stable and unstable, 151
Stability of the rotation of a top, 250
of & ship, 153
Static friction, 54
Statics in space, 37
of a rigid body, 125
plane, 34
Staude’s case of the unsymmetrical heavy
top, 138
System, closed, 79
conservative, 47, 230
cyclie, 222
non-conservative (dissipative), 47, 231

T

Tautochrone, 95
Tensor, symmetrical, 123

gtrain, 123

stress, 123

surface, 123
Three-body problem, 80

Lagrange’s case, 174

Time, absolute (Newton), 9, 11
proper, 14, 209
Top, heavy symmetrical, 136, 196, 225
heavy unsymmetrical, 138
spherical, 125, 134
Byminetrical, 134, 225
under no forces, 134, 146, 227
unsymmetrical, 135, 146, 227
Torque, 35
about an axis, 37, 58
about a point, 37
as a vector quantity, 241
connection with virtual work, 58
impulsive, 159
polygon, 126
Trajectory, curvature of, 33
Transformation, angle-preserving, 27
area-preserving, 26
Galilean, 11
Legendre, 226
Lorentz, 12, 13
orthogonal, 10
unimodular, 258
Translation of a rigid body, 118
Turning stool, 74 s
Two-body problem of astronomy, 44, 80,
235

U
Units, absolute, 7, 8
Giorgi’s system, 8
gravitational or practical, 7, 8

v

Variation of trajectory, 182, 205
Vector, 4

algebra, 46

analysis, 46

axial, 120

moment, 34

notation for products, 38

polar, 120

scalar product, 7

vector product, 34
Velocity, areal, 36, 39, 72

coordinates, generalized, 185, 201

decomposition, 32, 36

of a rigid body in arbitrary motion, 119
Virtual work, 51

displacement, 50

rotation, 58
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W Work,
Water drop in saturated atmosphere, 241 of the reactions, 52
Watt, unit, 8 principle of virtual, 51
Wave theory of light, 229 units of, 8
Weight, units of, 7 vi.rtuef,l, connection with torque, 58
‘ Wobbling ** of a cylinder rolling on a x:::i}i?gglement, 209
plane support, 254
Work, 7 Y
in a virtual rotation, 58 Yo-yo, 246
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